# The Physics of Flying Feces

#### Jim Gauthier, MLT, CIC

Hosted by Prof. Jean-Yves Maillard Cardiff University, Wales

www.webbertraining.com

September 19, 2024



#### Disclosure

- Jim was employed by Diversey from 2015-2023. He received salary and benefits from this company
- Jim has also consulted with Arjo, Baxter and Crede Technologies.
- None of these companies have had input into this presentation from a commercial interest
- Any images used in the presentation are for emphasis and do not imply a recommendation/endorsement



#### Objectives

At the end of the presentation, the participants will be able to:

- 1. List at least 5 common healthcare pathogens that can be present in feces
- 2. Recognize common sources of fecal pathogens within our healthcare settings
- 3. State at least two methods to limit the presence of fecal organisms within our healthcare settings

3



#### Feces\*

○ fe•ces fi siz/ [fee-seez] noun (used with a plural verb )

- ○1. Waste matter discharged from the intestines through the anus; excrement.
- ○2. Also, especially British, faeces.
  - Origin 1425-75; late middle English from Latin faecēs grounds, dregs, sediment
- As a lab tech: 'stool'
- As a grandparent: poopoo

\*www.dictionary.com - Dictionary.com unabridged V1.0.1 https://www.instagram.com/p/CxsxqpkxT-O/





#### We All Defecate

• Bowel movements can be between 72 and 470 g!

(2.5-16.6 oz.) (Cummings 1992)

- Scotland #1
- USA #3 / 5 (New York / Hawaii)
- Uganda best!

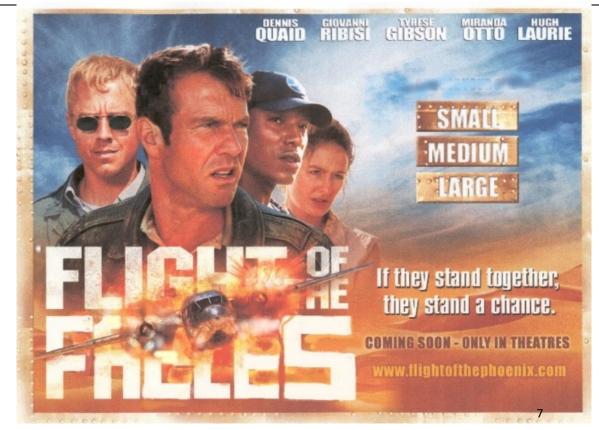


www.my.opera.com



## More Stuff!

- 70-75% of what we pass per rectum is water
- 30% of solid
   remaining is bacteria
   (1x10<sup>12</sup> per gram,
   dry weight)


 Defecation may occur from once every two or three days to several times per day

Kelly 1994

https://www.ummhealth.org/sites/default/files/Documents/Services/Surgery/UMass\_Colorectal\_Inforgraphic\_0316.pdf



## So, What is the Problem?



https://en.wikipedia.org/wiki/Flight\_of\_the\_Phoenix\_(2004\_film)#/media/File:Flightofthephoenix.PNG

#### **Global Healthcare Defecation**

#### Table I. Description of defecation in hospitals

| Question                           | Answers                                                 | % (n)     |
|------------------------------------|---------------------------------------------------------|-----------|
| Typical situation of defecation of | Open defecation outside                                 | 1% (13)   |
| patients                           | Some sort of bog outside                                | 1% (8)    |
| (n=1,134 answers)                  | Bog inside or outside                                   | 1% (14)   |
|                                    | Toilet with water flushing system inside and/or outside | 19% (213) |
|                                    | Toilet with water flushing system inside only           | 78% (900) |



# North American Healthcare Handling of Feces

Patients have a few choices

- Use the toilet in the room
   May be shared
- Use a commode
   Kept at bedside
   May be shared
- Use Bedpan
  - Kept in a variety of places
  - •Not always single use



www.medical-solution.net



#### Handling of Feces



https://myliberty.life/products/

- Use Incontinent products
  - Briefs
- Use bed
  - May have an absorbent pad under them
    - Vented, unconscious ICU patients



#### Bedpan/Commode: Now What?

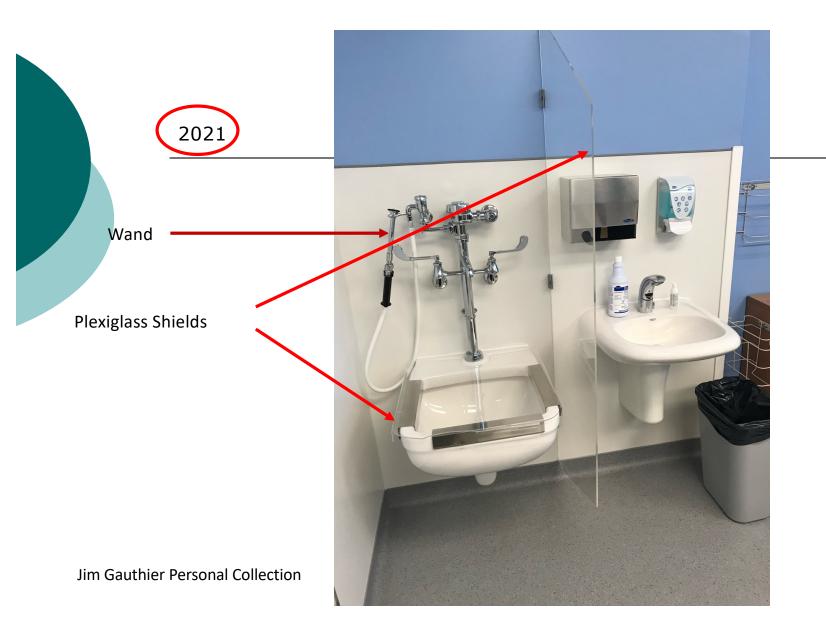






#### **Sluice Rooms**

#### Also known as


- Dirty utility room
- Soiled utility room
- May contain
  - Rim flushing sink/hopper
  - Hand hygiene sink
  - Clean/dirty area
  - Storage

https://www.safeopedia.com/definition/7204/sluice-room

## **Rim Flushing Sink**



Jim Gauthier Personal Collection





#### Hoppers

 Plenty of good evidence that there is dispersal of bacteria around these sinks

(Moorefield 1998, Frederick 1997)

 Household studies showed aerosol can persist hours after a flush



(Gerba 1975)



## **Bed Pan Washing**

- Pipe or wand on back of toilet
- Still in general use
- Huge risk of splashing
- Only rinses pan, no disinfection





# How Might Movement of Organisms Happen?

• Contamination of patient's clothing?

- Poor patient hand hygiene?
  - Sanitizer within stalls?





Do2learn.org

theonion.com



## **Toilets and Pathogen Dissemination**

- Most common bioaerosol droplet sizes <3 um</li>
- Empty
  - bioaerosol droplets distances of up to 1 meter from the toilet
- Solid feces and toilet paper slows the movement of water less bioaerosol droplets generated.
- High velocity flushing toilets may be more at risk of creating bioaerosol droplets

Knowlton 2018



#### What am I Worried About?







#### **Viral Pathogens Enveloped**

• Killed by hospital disinfectants

- Coronavirus
- Ebola



## Viral Pathogens Large Non-enveloped

• May, or may not be killed by hospital disinfectants

- Adenovirus
- Rotavirus

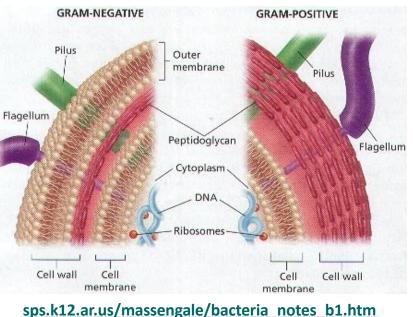


## Viral Pathogens – Small, Non-enveloped

May not be killed with hospital disinfectants

- Hepatitis A
- Enteroviruses
  - Poliovirus
  - Coxsackievirus
  - EV-D68
  - Rhinovirus
- Norovirus




#### **Gram Negative Bacteria**

o E. coli

- O Klebsiella pneumonia
- Enterobacter species
- Citrobacter species
- Proteus species
- Serratia species

With or without resistance genes (ESBL\*, CPE\*\*)

\*Extended Spectrum Beta-lactamase, \*\*Carbapenem producing Enterobacterales





#### **Other Poop Pathogens**

- Salmonella species
- Shigella species
- Yersinia species
- E. coli O157:H7 and others
- Campylobacter species
- Aeromonas / Vibrio species
- Acinetobacter\*

\*Can colonize feces – Aljindan 2015



## Fascinating Fecal Fact (Gram Positive)

#### O Boyce 2007 - MRSA

- If present in 4+ => 10<sup>7</sup>-10<sup>9</sup> Colony-Forming Units (cfu) per gram of stool
- 10,000,000 1,000,000,000



#### **Hospital Fecal Pathogens**

• Vancomycin Resistant Enterococci (VRE)

- Reasonably hardy in the environment
- Susceptible to hospital disinfectants



#### Quantified

Mayer 2003 – VRE
 Colony forming units / gram stool

#### 2,300-1,600,000,000!

1 g: 1 cm x 1 cm x 1 cm 1µg: 1mm x 1 mm x 1 mm







## **VRE and Environmental Soiling**

Donskey 2000

10 of 12 sets of cultures positive (83%)

• > 4 log/g

○ 1 of 9 sets positive (11%)

• < 4 log/g

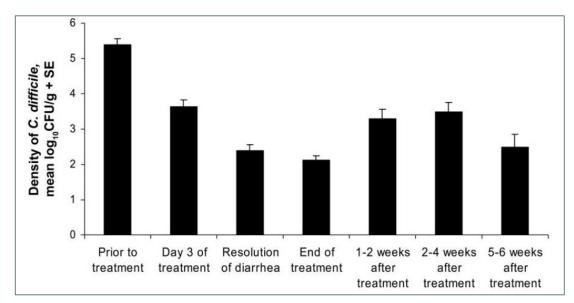


#### **Hospital Pathogens**

• Clostridium/Clostridioides difficile

Spore environmental survivor

Resistant to hospital disinfectants


- Vegetative bacteria sporulate when under stress
  - ODrying, antibiotics, temperature changes
  - •Vegetative cells easy to kill with hospital disinfectants
- Can excrete 1 x 10<sup>4</sup> 10<sup>8</sup> spores per gram feces

Mulligan 1979, Sood 2016



#### C. difficile Excretion

- O Sethi 2010
- Excretion detected throughout hospital stay



## C. difficile in the Environment

| Site                | Known + CD Patient |                | No Known + CD Patient |                |
|---------------------|--------------------|----------------|-----------------------|----------------|
|                     | After Routine      | After Terminal | After Routine         | After Terminal |
| Bedrails            | 50%                | 11.8%          | 7.4%                  | 4.1%           |
| Bedside Table       | 57.1%              | 22.2%          | 7.5%                  | 5.9%           |
| <b>Bed Controls</b> | 42.9%              | 17.6%          | 3.7%                  | 4.1%           |

Yui 2017

#### Patient's Environment

| Organism On Bedrail               | References                                                                |
|-----------------------------------|---------------------------------------------------------------------------|
| VRE                               | Bhalla, Boyce (1994), Bonten, Ray,<br>Duckro, Hayden, Mayer, Hota, Sample |
| MRSA                              | Calfee, Boyce (2007)                                                      |
| Clostridioides difficile          | Yui                                                                       |
| Resistant Acinetobacter baumannii | Rose, Thom, Choi                                                          |
| Resistant K. pneumonia (KPC)      | Rock, Thurlow                                                             |
| MDRO                              | Hess                                                                      |
| Bioburden/Bacteria                | Sehulster, Anderson, Adams, Attaway                                       |
| C. auris                          | Escandon, Welsh                                                           |

#### Patient's Environment

| Organisms on Overbed Table        | References                                           |
|-----------------------------------|------------------------------------------------------|
| VRE                               | Bhalla, Boyce (1994), Hota                           |
| <i>St. aureus/</i> MRSA           | Bhalla, Boyce (2007), Calfee,<br>Hess, Dancer (2009) |
| Resistant Acinetobacter baumannii | Enfield, Hess                                        |
| Clostridioides difficile          | Yui                                                  |
| Bioburden/Bacteria                | Dancer (2008), Adams                                 |



# Hardy Little Guys!

| Pathogen                     | Survival (Kramer)   | Survival (Porter) |
|------------------------------|---------------------|-------------------|
| Campylobacter jejuni         | Up to 6 days        |                   |
| Clostridium difficile spores | 5 months            | 140 days          |
| E. coli                      | 1.5 hrs – 16 months | <1 min – 56       |
| Enterococcus spp.            | 5 days – 4 months   | 0.02 - 287        |
| Klebsiella spp.              | >30 months          | 0.57 - 600        |
| Salmonella typhimurium       | 10 days – 4.2 years | 0.29 – 5          |
| Serratia marcescens          | 3 days – 2 months   | 0.29 – 20         |
| Shigella spp.                | 2 days – 5 months   |                   |
| Adenovirus                   | 7 days – 3 months   |                   |
| HAV                          | Up to 60 days       |                   |
| Norovirus                    | 8 hours – 7 days    |                   |

Kramer 2006. Porter 2024



#### **Patient Examination**

TABLE 2. Sensitivity of Culture of Different Anatomic Sites for Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae

|                                   | No. of positive cultures $(N = 24)$ | Sensitivity, %<br>(95% CI) |
|-----------------------------------|-------------------------------------|----------------------------|
| Skin sites                        |                                     |                            |
| Inguinal                          | 19                                  | 79 (58–93)                 |
| Axillary                          | 18                                  | 75 (53-90)                 |
| Upper back                        | 6                                   | 25 (10-47)                 |
| Antecubital fossae                | 6                                   | 25 (10-47)                 |
| Nonskin sites                     |                                     |                            |
| Rectal <sup>a</sup>               | 21                                  | 88 (68-97)                 |
| Urine $(N = 19)^{b}$              | 10                                  | 53 (29-76)                 |
| Oropharyngeal/tracheal secretions | 10                                  | 42 (22-63)                 |
| Combined sites                    |                                     |                            |
| Rectal and inguinal               | 24                                  | 100 (86-100)               |
| Rectal and axillary               | 23                                  | 96 (79-100)                |
| Axillary and inguinal             | 22                                  | 92 (73-99)                 |

NOTE. CI, confidence interval.

Thurlow 2013



#### Is it Just Incontinent Patients?

14 colonized VRE, continent – Mock exam rooms
Chair cultures positive

• 36% outpatient, 58% hemodialysis

Couch cultures positive

• 48% outpatient, 42% radiology, 45% hemodialysis

(Grabsch 2006)



#### **Basin Bathing and Fecal Bacteria**

 "Standard plate count bacteria ranged from 10<sup>5</sup> to 10<sup>10</sup> (cfu) per 100 ml for shower and bath water, and an average of 10<sup>4</sup> to 10<sup>6</sup> cfu per 100 ml for total coliforms."

Rose 1991



#### What Are We Seeing?

• C. difficile Floor Contamination

- Especially washrooms, sluice rooms
- Moved by feet hypothesized
- High rate of colonization in Geriatrics

(McCoubrey 2003)



#### Non-slip Socks

- Mahida (2016) cultured 54 pairs of socks and 35 floor samples
  - VRE was found on 85% of socks and 69% of floor samples
  - MRSA was found on 9% of socks and 17% of floor samples
  - C. diff was not detected on socks or floor samples





#### Table I

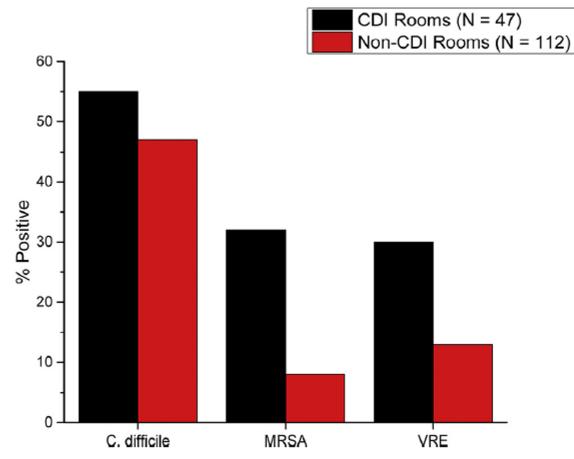
Recovery of multidrug-resistant organisms from socks and floor samples; and numbers of patients known to have carriage from hospital administration system

|                 | Vancomycin-<br>resistant<br>enterococci | Meticillin-<br>resistant<br>Staphylococcus<br>aureus | Clostridium<br>difficile |
|-----------------|-----------------------------------------|------------------------------------------------------|--------------------------|
| Used socks      | 46 (85%)                                | 5 (9%)                                               | 0                        |
| (54 samples)    |                                         |                                                      |                          |
| Floor           | 24 (69%)                                | 6 (17%)                                              | 0                        |
| (35 samples)    |                                         |                                                      |                          |
| Patients with   | 3                                       | 2                                                    | 4                        |
| carriage on     |                                         |                                                      |                          |
| hospital system |                                         |                                                      |                          |

Mahida 2016

.

#### Floors


- Deshpande et al (2017) cultured floors and observed what touched the floor
- Recommends staff
   education on possible
   role of floor in pathogen
   movement



Brief Report

Are hospital floors an underappreciated reservoir for transmission of health care-associated pathogens?

Abhishek Deshpande MD, PhD <sup>a,b</sup>, Jennifer L. Cadnum BS <sup>b,c</sup>, Dennis Fertelli BS <sup>b,c</sup>, Brett Sitzlar BS, MPH <sup>b,c</sup>, Priyaleela Thota MD <sup>b,c</sup>, Thriveen S. Mana MS, MBA <sup>b,c</sup>, Annette Jencson MT, CIC <sup>c</sup>, Heba Alhmidi MD <sup>c</sup>, Sreelatha Koganti MD <sup>c</sup>, Curtis J. Donskey MD <sup>b,d,\*</sup> The frequency of contamination was similar for each of the 5 hospitals and from room and bathroom floor sites



**Fig 1.** Recovery of *Clostridium difficile*, methicillin-resistant *Staphylococcus aureus*, and vancomycin-resistant enterococci from floors in patient rooms from 5 hospitals in northeast Ohio.



# **High Touch Objects on Floors**

○ 41% of rooms surveyed (n=100) had HTO on floor

- Personal items
  - clothing, canes, and cellular telephone chargers
- Medical devices or supplies
  - pulse oximeter, call button, heating pad, urinal, blood pressure cuff, wash basin, and heel protector
- Bed linen or towels
  - bed sheets, pillow, and towels



#### Can We Move the Bacteria?

#### • Hand or glove culture after picking up object (n=31)

- MRSA 18%
- VRE 6%
- CD 3%







# How much *C. difficile*?

Ali et al. cultured for *C. difficile* on floors and 'higher' areas

• Floors almost 3 times as contaminated

| Surface       | Mean CFU/cm <sup>2</sup> | Surface         | Mean CFU/cm <sup>2</sup> |
|---------------|--------------------------|-----------------|--------------------------|
| Room Corner   | 0.87±1.45                | Toilet Floor    | 1.87± 2.40               |
| Bed Rail      | 0.17± 0.35               | Toilet Grab Bar | 0.17±0.32                |
| Bed Controls  | 0.33± 0.74               | Toilet Flush    | 0.01±0.02                |
| Bedside Table | 0.01± 0.03               | Toilet Seat     | 0.76 ±1.76               |

Ali 2015

#### **Areas Tested**

| Surface       | Mean<br>CFU/cm <sup>2</sup> | Area Tested<br>(cm <sup>2</sup> ) | Surface         | Mean<br>CFU/cm <sup>2</sup> | Area<br>Tested cm <sup>2</sup> |
|---------------|-----------------------------|-----------------------------------|-----------------|-----------------------------|--------------------------------|
| Room Corner   | 0.87±1.45                   | 225 (                             | Toilet Floor    | 1.87± 2.40                  | 225                            |
| Bed Rail      | 0.17± 0.35                  | 180                               | Toilet Grab Bar | 0.17±0.32                   | 150                            |
| Bed Controls  | 0.33±0.74                   | 225                               | Toilet Flush    | 0.01±0.02                   | 50                             |
| Bedside Table | 0.01± 0.03                  | 300                               | Toilet Seat     | 0.76 ±1.76                  | 800                            |



#### Room Contamination – C. difficile

Control (17 rooms), Carrier (70), active *C. diff* (30) Sponge-wipe (5x20 cm) Patient Room: high touch surfaces

- floor, bedrail, patient table, armchair, call button Bathroom
- floor, toilet handrail, toilet seat, toilet flush button, door handle

Gilboa 2020

|                     | Control (n=17)      | Carrier (n=70)        | CDI (n=30)          | p Value     |
|---------------------|---------------------|-----------------------|---------------------|-------------|
| Incontinent         | 70.6% (12)          | 56.7 <b>(38)</b>      | 46.2 (12)           | 0.29        |
| Total CFU/room      | 13                  | 2060                  | 276                 |             |
| Mean ( <u>+</u> SD) | 0.8 (2.6)           | 29.9 (71.5)           | 9.2 (17.9)          | 0.004-0.007 |
| %No Growth (n)      | 88.2 <b>(15)</b>    | 40.0 <b>(32)</b>      | 46.7 <b>(14)</b>    | NA          |
| CFU/contam. Site*   | 2.8 ( <u>+</u> 3.9) | 18.3 ( <u>+</u> 39.2) | 9.2 ( <u>+</u> 9.3) | Not Sign.   |

#### Most contaminated site (CFU) in all sampling was floors:

#### • Carrier

• Room Floors: 19 (27%) • Bathroom Floor: 15 (21%) • Bedrail: 19 (27.1%)

#### • CDI group

Room Floor: 7 (23%)
 Bathroom Floor: 5 (16%)
 Bedrail: 5 (16.7%)

\*MEAN

Gilboa 2020



#### Is C. difficile Spread Within Hospitals?

 A much larger follow-up study by Eyre (2013) conducted over 3.6 years and using whole genome sequencing (WGS) found that only 35% of HO-CDI cases were genetically associated with previous cases. Of 957 cases of HO-CDI, 624 (65%) were genetically distinct and thus not related to healthcare exposure

Eyre 2013

INFECTION CONTROL & HOSPITAL EPIDEMIOLOGY DECEMBER 2016, VOL. 37, NO. 12

ORIGINAL ARTICLE

Assessment of the Overall and Multidrug-Resistant Organism Bioburden on Environmental Surfaces in Healthcare Facilities

Alicia M. Shams, MPH;<sup>1</sup> Laura J. Rose, MS;<sup>1</sup> Jonathan R. Edwards, MStat;<sup>1</sup> Salvatore Cali, MPH;<sup>2</sup>

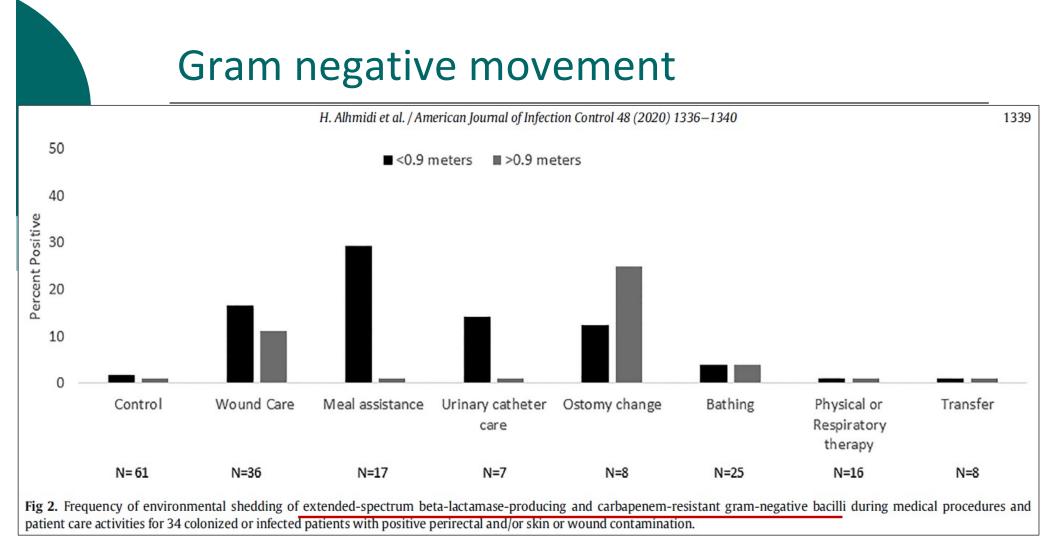
 Composite of TV remote, telephone, call button and bedrails most contaminated (100 cm<sup>2</sup>)

• MRSA, VRE, C. difficile, A. baumannii, K. pneumoniae

Most Common

○ 40% of rooms sampled positive for MDRO

Shams 2016


# **Other Reservoirs for Gram Negative?**

- Garcia, 2005 AJIC, Good review concerning healthcare pneumonia
  - Gastric Colonization
  - Upper Respiratory Tract is colonized
     Fibronectin helps streptococci to adhere
     Drying or inflammation will decrease this
     Reduces streptococci binding sites and allows for overgrowth of Gram negative bacilli



#### There's More!

- In one ICU, 60% of all patients colonized after 5 days and 85% by tenth day
  - Gram negative microorganisms predominated during this period
- Vented patients
  - Heavily colonized by gram negative
  - Can occur in a little as 24 hours after intubation





#### What Should We Do?

Every patient has skin, feces and mucous membranes!
 Routine Practices/Standard Precautions

- If they are leaking, limit their movement and protect yourself. If it is dirty or you used it, clean it!
- 20 words



#### The Environment

○ I do recognize that we live in a buggy world

- I only want clean equipment
- I only want clean hands
- I only want to limit the movement of those <u>who soil the</u> <u>environment!</u>



# **Cleaning and Disinfecting**

- Disinfecting is not as important as effective cleaning (Dettenkofer 2004)
- Housekeeping has been cut too far in many institutions
  - Or lowest bidder!
  - Florence Nightingale recognized that cleaning was vital in 1850's

(Dancer 1999)



#### **Cleaning and Disinfecting**

We need to clean better

- Microfiber can have issues
- Single Dip Methods
- Remove dirt, organisms, spores
- We need to clean effectively
  - Well trained
  - Check the work (fluorescent concept)
  - (Dettenkofer 2004, Carling 2006, Buntrock 2005)



#### Proposal: Any Fecal Clean Up

- 1. Wipe up gross spill with disposable product or launderable cloth
- Disinfect 'area' with disinfectant/sporicidal wipe, repeat if wipe is soiled on first pass. Allow contact time for <u>disinfection</u>
- Use sporicidal wipe on 'area', and allow contact time for <u>sporicidal</u> action



# C. diff issues? Jim's First Question

• What do you do with bedpans/commode buckets?

- Disposable Plastic (single use)
- Thermal Disinfection (bedpan washer)
- Macerator (single use)
- Liner bags that solidify waste
  - Regular waste stream



### Risk to Staff

- Nursing needs, perceptions, and satisfaction related to patient bodily waste management
- 1. Nurse knowledge of risk of exposure
- 2. Reporting and mitigation of exposure
- 3. Satisfaction and Morale

Harris 2024



#### Harris 2024 Survey Results

Waste management devices can decrease costs of HAI
88% did not report stool splash or spill events
80% use PPE – 99% only use gloves

|                | No        | Maybe     | Yes       |
|----------------|-----------|-----------|-----------|
| Macerators     | 202 (80%) | 39 (15%)  | 12 (4.7%) |
| Bedpan Liners  | 162 (63%) | 27 (11%)  | 68 (26%)  |
| Splash Screens | 175 (68%) | 22 (8.5%) | 62 (24%)  |
| Bedpans        | 101 (39%) | 64 (24%)  | 97 (37%)  |



# Popp 2015

Single Use Bedpan

Macerators: Australia (73%) and UK (89%)

Multi-Use Bedpan

Thermal Disinfection: Germany (100%)

• Liner bags:

Canada/US (but low %)

#### Apple 2016

Table 1. Overview of Bedpan Types and Washing Methods.

| Category:                | Disposable             | Disposable                | Reusable                      | Reusable                       |
|--------------------------|------------------------|---------------------------|-------------------------------|--------------------------------|
| Medium:                  | Plastic bag with liner | Paper mâché/<br>cardboard | Plastic or steel              | Plastic or steel               |
| Infrastructure required: | Waste receptacle       | Macerator<br>machine      | Washer-disinfector<br>machine | Manual spray<br>wand/nozzle    |
| Bedpan handling time:    | Low                    | Low to high <sup>a</sup>  | Low to high <sup>a</sup>      | High to very High <sup>b</sup> |
| Start-up costs:          | Low                    | High                      | High                          | Medium                         |
| Materials usage:         | High                   | High                      | Low                           | Low                            |
| Energy usage (washing):  | None                   | Low                       | Medium                        | Low                            |
| Equip. maintenance:      | None                   | Low to medium             | Medium to high                | Low                            |
| Waste output quantity:   | High                   | High                      | Low                           | Low                            |
| Risk of infection:       | Low                    | Low                       | Low to medium <sup>c</sup>    | High                           |
|                          |                        |                           |                               |                                |

<sup>a</sup>Less time if the machine is located in or next to the patient room. More time if the machine is located in a central soiled utility room. <sup>b</sup>High time due to manual washing. Very high time (more walking) if washing is only done in the soiled utility room. <sup>c</sup>Generally low risk, but some pathogens may remain after washing.



#### **Bedpan Classification**

• Spaulding/CDC noncritical item (CDC 2024)

Low Level Disinfection

• Van Knippenberg-Gordebeke (2012)

- Netherlands classify as semi-critical
- High Level Disinfection



# The Soiling of the Environment

• How do we change incontinent patient's briefs?

How many patients, today, are incontinent? (Popp 2015)

• How do we change beds?

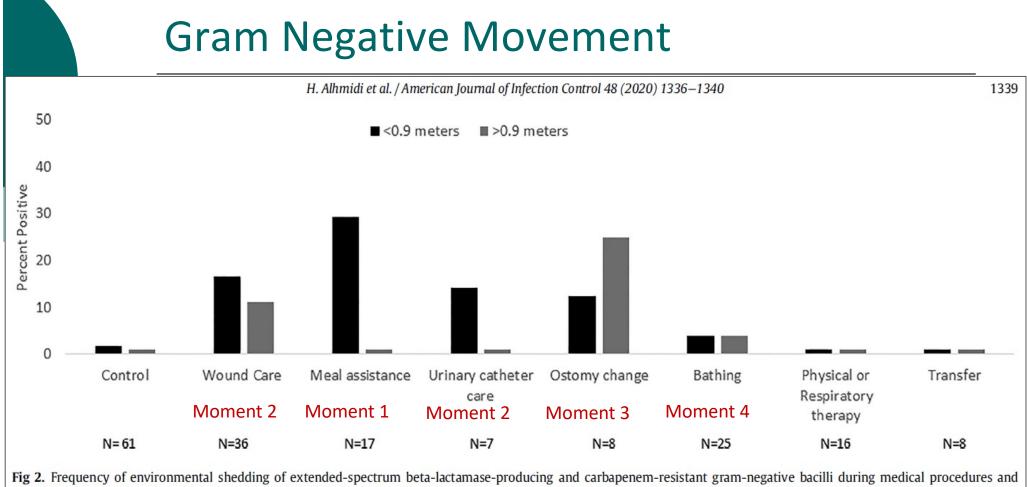
- Number of glove changes?
- Disinfection?

• How do we handle bed pans? (Popp 2015)

- Bedpan with red paint all over it...
- Commode Chairs?
  - Who cleans what?



# **Staff Training**


#### O N'Guyen 2018

- 1 washer/disinfector for every 21 beds
- >50% emptied container in patient bathroom
- >30% used hand shower to rinse
- "lack of proper practices for excreta management could be linked to a high incidence of Extended spectrum B-lactamase producing Enterobacteriaceae in healthcare settings, especially in surgical units"

# Targeted Moments of Environmental Disinfection

- 1. Before placing a food/drink on an over-bed table
- 2. Before/after any aseptic practice (wounds, lines, etc.)
- 3. After any procedure involving feces or respiratory secretions within the patient bed space
- 4. After patient bathing (within bed space)
- After any object used by/on a patient touches the floor

Gauthier 2020



patient care activities for 34 colonized or infected patients with positive perirectal and/or skin or wound contamination.

#### **UV Impact on Floors**

- Evaluated 2 UV-C devices impact on *C. diff*, MRSA and VRE
- Cultured 5 high touch surfaces and floors to measure before and after manual cleaning and after UV-C treatment

 American Journal of Infection Control 44 (2016) 416-20

 Contents lists available at ScienceDirect

 American Journal of Infection Control

 journal homepage: www.ajicjournal.org

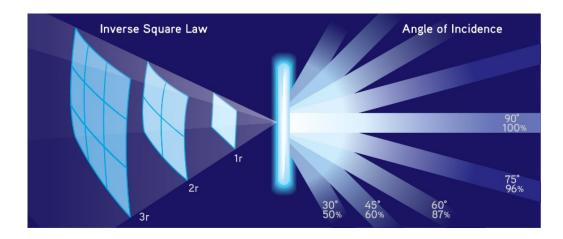
Postdischarge decontamination of MRSA, VRE, and *Clostridium difficile* isolation rooms using 2 commercially available automated ultraviolet-C-emitting devices

Titus Wong MD, MHSc, FRCPC<sup>a,b,1</sup>, Tracey Woznow BSc, BEd(Sec)<sup>a</sup>, Mike Petrie<sup>c</sup>, Elena Murzello BScN, MBA<sup>d</sup>, Allison Muniak MASc<sup>d</sup>, Amin Kadora MBA<sup>e</sup>, Elizabeth Bryce MD, FRCPC<sup>a,b,\*,1</sup>

Wong 2016



#### **UV Impact on Floors**


- Neutral detergent, solution and mop head were changed after every third room.
- "Neutral detergent solutions or mops can act as reservoirs for bacteria, and these results emphasize the need for use of a disinfectant or alternatively to change neutral detergent solutions and mops heads after every room use"
- UVC disinfection mitigated against flaws in the execution of manual cleaning



#### Aerobic Colony Forming Units - Floors

| Site   | Before Manual        | After Manual        | After UVC        | P Value  |
|--------|----------------------|---------------------|------------------|----------|
| Floors | 241.4 <u>+</u> 184.6 | 590.0 <u>+</u> 97.7 | 8.8 <u>+</u> 9.5 | <0.00001 |
|        | 2.38 log             | 2.77 log            | 0.94 log         |          |

(Value is mean<u>+</u>SD)



Wong 2016



### **Other Possible Solutions**

o Cooper 2016

- UV-C in used, empty bathrooms
  - Showed reduction in surface and air contamination



## Suggestions

#### Any new hospital construction or renovation

- Single rooms
- Thermal flusher/disinfector
- Macerators
- Use of liner bags
- Incontinent Rooms
- Multi-use washrooms
  - For continent and incontinent



## Suggestions

Staff and visitor hands

Patient hands

• Can patients perform their own hand hygiene?

Further look at the food link

- Speculated in 1991 (Zaleznik 1991)
- Investigated for Gram neg in 1971 (Shooter 1971)
- CD found in sausages, ground beef, veal, turkey (Tan 2022)
- Other Environmental Sources? (Teska 2021)



## In Summing Up

- I have a problem
  - Fecal fascination
- I really do not think it is right to feed feces to patients
  - Okay, pretty harsh, but...
- We need to handle excrement better than our great-great-great grandparents did!





## Additionally, Going Forward

○ Hand Hygiene and PPE

- High Touch surface cleaning and disinfection
- Train on management of handling human waste
- Manual cleaning and emptying of waste containers must be avoided

Hallam 2020



## Questions?



78



- Adams CE, et al. Examining the association between surface bioburden and frequently touched sites in the intensive care. J Hosp Infect 2017;95:76-80.
- Alhmidi H, et al. Shedding of multidrug-resistant gram-negative bacilli by colonized patients during procedures and patient care activities. Am J Infect Cont 2020;48:1136-40.
- Ali S, et al. A novel quantitative sampling technique for detection and monitoring of Clostridium difficile contamination in the clinical environment. J Clin Micro 2015;53:2570-4. doi:10.1128/JCM.00376-15.
- Aljindan R, et al. Prevalence of digestive tract colonization of carbapenem-resistant *Acinetobacter baumannii* in hospitals in Saudi Arabia. J Med Microbiol 2015;64:400–406.
   doi: 10.1099/jmm.0.000033.
- Anderson DJ, et al. The Antimicrobial Scrub Contamination and Transmission (ASCOT) Trial: A three-arm, blinded, randomized controlled trial with crossover design to determine the efficacy of antimicrobial-impregnated scrubs in preventing healthcare provider contamination. Infect Cont Hosp Epidemiol 2017;38(10):1147-54.



- Apple M. Toward a safe and cleaner way: dealing with human waste in healthcare. Health Environ Res Des J. 2016;9(4):26-34. DOI: 10.1177/1937586715619739
- Attaway HH, et al. Intrinsic bacterial burden associated with intensive care unit hospital beds: effects of disinfection on population recovery and mitigation of potential infection risk. Am J Infect Cont 2012;40:907-12.
- Bhalla A, et al. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol 2004;25:164-167.
- Bonten MJM, *et al.* Epidemiology of colonisation of patients and environment with vancomycinresistant enterococci. Lancet 1996;348:1615-1619.
- Boyce JM, et al Outbreak of multidrug-resistant *Enterococcus faecium* with transferable *vanB* class vancomycin resistance. J Clin Microbiol 1994;32:1148-1153.
- Boyce JM, et al. Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant *Staphylococcus aureus* colonization of the gastrointestinal tract. Infect Control Hosp Epidemiol 2007;28(10):1142-7.
- Buntrock, GR. Room for Improvement. Health Fac Manage. 200518(11);41-2.



- Calfee DP, et al. Strategies to prevent methicillin-resistant *Staphylococcus aureus* transmission and infection in acute care hospitals: 2014 Update Infect Control Hosp Epidemiol 2014;35(S2):S108-132.
- Carling PC, et al. Improved cleaning of patients rooms using a new targeting method. Clin Infect Dis 2006;42:385-8.
- Choi WS, et al. *Acinetobacter baumannii* in intensive care units and successful outbreak control program. J Korean Med Sci 2010;25:999-1004.
- Cooper J, et al. Efficacy of an automated ultraviolet C device in a shared hospital bathroom. Am J Infect Cont 2016;44:1692-4. http://dx.doi.org/10.1016/j.ajic.2016.07.004
- Cummings JH et al. Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterol 1992;103(6):1783-9. doi: 10.1016/0016-5085(92)91435-7.
- Dancer SJ. Mopping up hospital infection. J Hosp Infect 1999;43:85-100.
- Dancer SJ, et al. Monitoring environmental cleanliness on two surgical wards. Int J Environ Health Res 2008;18:357-364.



- Dancer SJ, et al. Measuring the effect of enhanced cleaning in a UK hospital: a prospective crossover study. BMC Med 2009;7:28.
- Deshpande A, et al. Are hospital floors an underappreciated reservoir for transmission of health care-associated pathogens? Am J Infect Cont 2017;45:336-8.
- Dettenkofer M, et al. Does disinfection of environmental surfaces influence nosocomial infection rates? A systematic review. Am J Infect Control 2004;32:84-9.
- Donskey CJ, et al. Effect of antibiotic therapy on the density of vancomycin resistant enterococci in the stool of colonized patients. NEJM 2000;343(26):1925-32. DOI:10.1056/NEJM200012283432604
- Duckro AN, et al. Transfer of vancomycin-resistant enterococci via health care worker hands. Arch Intern Med 2005;165:302-307.
- Enfield KB, et al. Control of simultaneous outbreaks of Carbapenemase-producing Enterobacteriaceae and extensively drug-resistant *Acinetobacter baumannii* infection in an intensive care unit using interventions promoted in the Centers for Disease Control and Prevention 2012 Carbapenemase resistant Enterobacteriaceae toolkit. Infect Control Hosp Epidemiol 2014;35:810-817.



- Escandon P, et al. Molecular epidemiology of *Candida auris* in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis *2019;*68(1):15–21. doi: 10.1093/cid/ciy411.
- Eyre D, et al. Diverse sources of *C. difficile* infection identified on whole-genome sequencing. N Engl J Med 2013;369:1195-1205.
- Frederick J et al. Clostridium difficile dispersion by hand held flusher wand and rim flushing hopper. Am J Infect Control 1997;25(2):166 (abstract)
- Garcia R. A review of the possible role of oral and dental colonization of the occurrence of health care-associated pneumonia: underappreciated risk and a call for interventions. Am J Infect Control 2005;33(9):527-40.
- Gauthier J, et al. Targeted moments of environmental disinfection. Joint Comm J Qual Pat Safety 2020;46:167-72.
- Gerba CP, et al. Microbiological hazards of household toilets: droplet production and the fate of residual organisms. App Microbiol 1975;30(2):229-237. DOI: <u>10.1128/am.30.2.229-237.1975</u>



- Gilboa M, et al. Environmental shedding of toxigenic *Clostridioides difficile* by asymptomatic carriers: A prospective observational study. Clin Microbiol Infect 2020;26;1052-7. https://doi.org/10.1016/j.cmi.2019.12.011
- Grabsch EA, et al. Risk of environmental and healthcare worker contamination with vancomycinresistant enterococci during outpatient procedures and hemodialysis. Infect Control Hosp Epidemiol 2006;27(3):287-93.
- Hallam C, et al. COVID-19: considerations for the safe management and disposal of human excreta. Infect Prev Pract 2020;2. <u>https://doi.org/10.1016/j.infpip.2020.100085</u>
- Harris D, et al. The reality of patient bodily waste management: Nurse perceptions of current practice & staff safety. J Hosp Admin 2024;13(2):20-31. DOI: 10.5430/jha.v13n2p20
- Hayden MK, et al. Reduction in acquisition of vancomycin-resistant Enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis 2006;42:1552-1560.
- Hess AS, et al. A randomized controlled trial of enhanced cleaning to reduce contamination of healthcare worker gowns and gloves with multidrug-resistant bacteria. Infect Control Hosp Epidemiol 2013;34:487–493.



- Hota B, et al. Interventional evaluation of environmental contamination by vancomycin-resistant enterococci: failure of personnel, product, or procedure? J Hosp Infect 2009;71:123-31.
- Kelly CP, et al. *Clostridium difficile* colitis. NEJM 1994;330(4):257-62.
- Knowlton SD, et al. Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrob Resist Infect Control, 2018; 7:16. DOI 10.1186/s13756-018-0301-9.
- Kramer A, et al. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases 2006;**6**:130. doi:10.1186/1471-2334-6-130
- Mahida N, et al. Non-slip socks: A potential reservoir for transmitting multidrug resistant organisms in hospitals. J Hosp Infect 2016;94:273-295. <u>http://dx.doi.org/10.1016/j.jhin.2016.06.018</u>
- Mayer RA, et al. Role of fecal incontinence in contamination of the environment with vancomycinresistant enterococci. Am J Infect Control 2003; 31:221-225.
- McCoubrey J, et al. *Clostridium difficile* in a geriatric unit: a prospective epidemiological study employing a novel S-layer typing method. J Med Micro 2003;52:573-8.



- Moorefield M, et al. Enterococcus dispersion by hand held flusher wand and rim flushing hopper. Am J Infect Control 1998;26(7):177 (Abstract)
- Mulligan ME, et al. Contamination of a hospital environment by *Clostridium difficile*. Curr Microbiol 1979;3:173-5.
- N'Guyen TTH, et al. Association between excreta management and incidence of extendedspectrum b-lactamase producing Enterobacteriaceae: role of healthcare workers' knowledge and practices. J Hosp Infect 2019;102:31-6. <u>https://doi.org/10.1016/j.jhin.2018.12.006</u>
- Popp W, et al. Global practices related to handling of faeces and urine in hospitals results of an International Federation of Infection Control (IFIC) survey. Int J Infect Cont 2015;11(1):1-11. doi: 10.3396/IJIC.v11i1.004.15
- Porter L, et al. How long do nosocomial pathogens persist on inanimate surfaces? A scoping review. J Hosp Infect 2024;147:25-31. https://doi.org/10.1016/j.jhin.2024.01.023
- Ray AJ, et al. A multicenter randomized trial to determine the effect of an environmental disinfection intervention on the incidence of healthcare-associated *Clostridium difficile* Infection. Infect Cont Hosp Epidemiol 2017;38(7):777-783. <u>https://doi.org/10.1017/ice.2017.76</u>



- Rutala WA, et al. Guideline for disinfection and sterilization in healthcare facilities, 2008. Update June 2024. <u>https://www.cdc.gov/infection-control/media/pdfs/Guideline-Disinfection-H.pdf</u> Accessed 20240812
- Rock C, et al. Frequency of *Klebsiella pneumoniae* Carbapenemase (KPC)–producing and non-KPC producing Klebsiella species contamination of healthcare workers and the environment. Infect Control Hosp Epidemiol 2014;35(4):426-9.
- Rose JB, et al. Pathogens in graywater from various household sources. Wat Res 1991;25(1):37-42.
- Sample ML, et al. An outbreak of vancomycin-resistant enterococci in a hematology-oncology unit: control by patient cohorting and terminal cleaning of the environment. Infect Control Hosp Epidemiol 2002;23:468-470.
- Sehulster LM, et al. Guidelines for environmental infection control in health-care facilities. Recommendations from CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). <u>https://www.cdc.gov/infectioncontrol/pdf/guidelines/environmental-guidelines-P.pdf</u> Accessed 20240110



- Sethi AK, et al. Persistence of skin contamination and environmental shedding of *Clostridium difficile* during and after treatment of *C. difficile* infection. Infect Control Hosp Epidemiol 2010; 31:21-27. DOI: 10.1086/649016
- Shams AM, et al. Assessment of the overall and multidrug-resistant organism bioburden on environmental surfaces in healthcare facilities. Infect Control Hosp Epidemiol 2016;37:1426–1432. DOI: 10.1017/ice.2016.198
- Shooter RA et al. Isolation of *Escherichia coli, Pseudomonas aeruginosa*, and Klebsiella from food in hospitals, canteens, and schools. Lancet 1971;298(7721):390-2.
- Sood G, et al. Outbreaks in health care settings. Infect Dis Clin N Am 30 (2016) 661–687. <u>http://dx.doi.org/10.1016/j.idc.2016.04.003</u>
- Tan TD, et al. A *Clostridioides difficile* surveillance study of Canadian retail meat samples from 2016-2018. Anaerobe 2022;24:102551. <u>https://doi.org/10.1016/j.anaerobe.2022.102551</u>
- Teska P, et al. *Clostridioides difficile* infection Understatement of general environmental risk and overstatement of healthcare environment risk. IC Tips 2021. <u>https://infectioncontrol.tips/2021/10/22/clostridioides-difficile-infection-understatement-andoverstatement/</u> Accessed 2024/8/14



- Thom KA, et al. Environmental contamination because of multidrug-resistant *Acinetobacter baumannii* surrounding colonized or infected patients. Am J Infect Control 2011;39:711–715.
- Thurlow CJ, et al. Anatomic sites of patient colonization and environmental contamination with *Klebsiella pneumoniae* carbapenemase-producing Enterobacteriaceae at long-term acute care hospitals. Infect Control Hosp Epidemiol. 2013;34(1):56-61. doi: 10.1086/668783.
- Welsh RM, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast *Candida auris* on a plastic health care surface. J Clin Microbiol 2017;55:2996 – 3005. https://doi.org/10.1128/JCM.00921-17.
- Wong et al. Postdischarge decontamination of MRSA, VRE, and *Clostridium difficile* isolation rooms using 2 commercially available automated ultraviolet-C—emitting devices. Am J Infect Control 2016;44:416-20. <u>http://dx.doi.org/10.1016/j.ajic.2015.10.016</u>
- Yui S, et al. Identification of *Clostridium difficile* reservoirs in the patient environment and efficacy of aerial hydrogen peroxide decontamination. Infect Control Hosp Epidemiol 2017;38:1487–1492.
- Zaleznik DF. *Clostridium difficile*: an important nosocomial pathogen for the 1990s. Clin Micro Newsl 1991;13(19):145-9.



## Thank You!



| www.webbertraining.com/schedulep1.php |                                                                                                                                                                                                      |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| October 10, 2024                      | RELATIONSHIPS AMONG PATIENT SAFETY CLIMATE, STANDARD PRECAUTION<br>ADHERENCE, HEALTHCARE WORKER AND PATIENT OUTCOMES<br>Speaker: Prof. Amanda J. Hessels, Columbia University, School of Nursing     |
| October 17, 2024                      | LONGITUDINAL GENOMIC SURVEILLANCE TO TRACK PATHWAYS LEADING TO<br>CLOSTRIDIODES DIFFICILE COLONIZATION AND INFECTION IN AN ICU<br>Speaker: Prof. Evan Snitkin, University of Michigan Medical School |
| October 18, 2024                      | (FREE European Teleclass)<br>SPECIAL LECTURE FOR CLEAN HOSPITALS DAY<br>Speaker: Prof. Didier Pittet, University of Geneva, Switzerland                                                              |
| October 23, 2024                      | (Australasian Teleclass)<br>CLOSTRIDIUM DIFFICILE INFECTION – ONE HEALTH AND THE RISE IN COMMUNITY-<br>ASSOCIATED INFECTION<br>Speaker: Prof. Tom Riley, The University of Western Australia         |
| October 24, 2024                      | (FREE Teleclass)<br>WHY CERTIFY? THE VALUE OF CERTIFICATIONIN INFECTION PREVENTION AND                                                                                                               |

# Thanks to Teleclass Education **PATRON SPONSORS**



V ROX TECHNOLOGIES INC.



gamahealthcare.com

diversey.com

virox.com