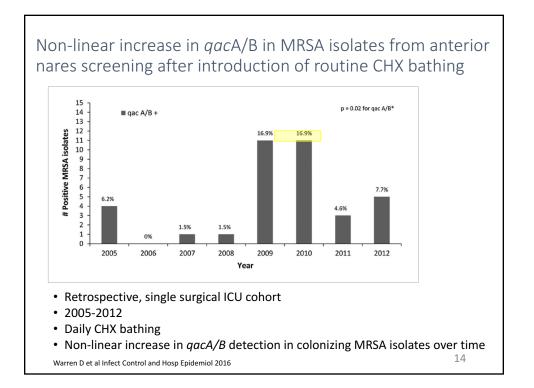
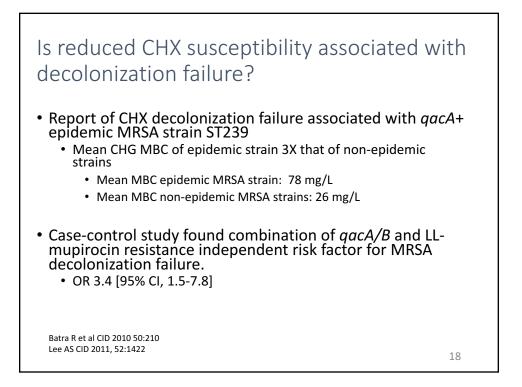


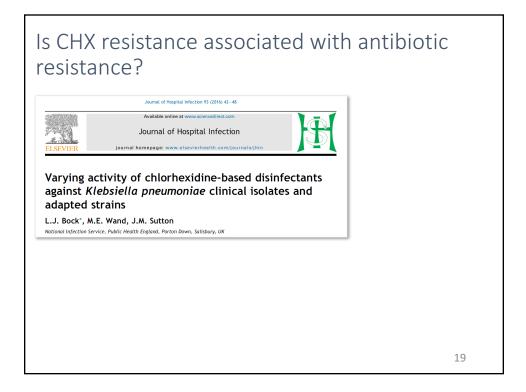
- Phenotypic methods
 - Agar or broth macro/microdilution MICs/MBCs
 - Time kill assays
 - Post-exposure colony counts
 - Efflux over-expression
 - Epidemiologic cutoff
- Genotypic methods
 - Detection of efflux pump genes by PCR
 - qacA/B, smr, norA/B, cepA, qacE

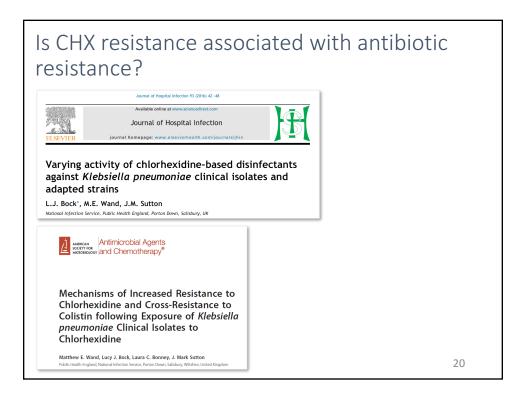

9

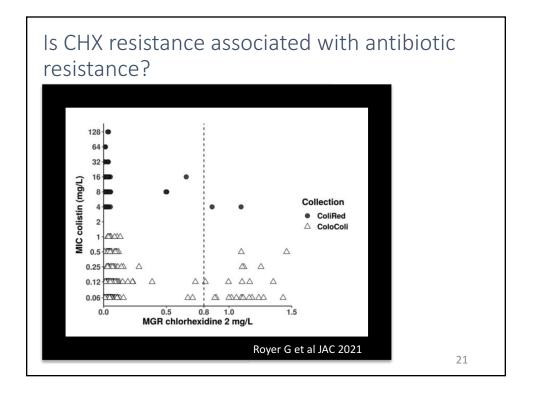
Secondary analyses of clinical trials data to evaluate the microbial effects of routine CHX bathing					
Population	Period of CHG exposure	Microbes Studied	Change in CHG Susceptibility?	Referenc e	
7,727 patients in 9 ICUs and BMTUs in 6 US hospitals	6 months	713 MRSA 393 VRE	No change in CHX MIC ₉₀ for MRSA or VRE	Climo 2013	
74,256 patients in 74 ICUs in 43 hospitals	18 months	3,123 MRSA	No change in CHX MIC ₅₀ /MIC ₉₀ or in <i>qac</i> A/B carriage	Hayden 2016	
10,030 soldiers	20 months	615 MRSA	No difference in <i>qacA/B</i> carriage	Schlett 2014	
	Population 7,727 patients in 9 ICUs and BMTUs in 6 US hospitals 74,256 patients in 74 ICUs in 43 hospitals 10,030	PopulationPeriod of CHG exposure7,727 patients in 9 ICUs and BMTUs in 6 US hospitals6 months74,256 patients in 74 ICUs in 43 hospitals18 months10,03020	PopulationPeriod of CHG exposureMicrobes Studied7,727 patients in 9 ICUs and BMTUs in 6 US hospitals6 months713 MRSA 393 VRE74,256 patients in 74 ICUs in 43 hospitals18 months3,123 MRSA10,03020615 MRSA	PopulationPeriod of CHG exposureMicrobes StudiedChange in CHG Susceptibility?7,727 patients in 9 ICUs and BMTUs in 6 US hospitals6 months713 MRSA 393 VRENo change in CHX MIC90 for MRSA or VRE74,256 patients in 74 ICUs in 43 hospitals18 months3,123 MRSANo change in CHX MIC90 for MRSA or VRE10,03020615 MRSANo difference in	

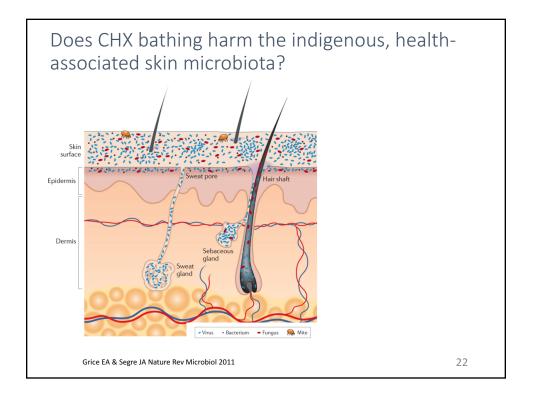
Hospital location	Interventio n group	Study period	Culture type	<i>qac</i> identity	MLST	CHX MIC (mg/L)	CHX MBC (mg/L)	Mupirocin susceptibility profile
Florida	1	baseline	screen	qacA	ST8	4	4	S
Florida	1	intervention	screen	qacB	ST8	4	8	S
Florida	1	intervention	screen	qacA	ST2484	8	8	S
Texas	1	intervention	clinical	qacA	ST8	8	8	LL
Florida	3	intervention	clinical	qacA	ST450	4	16	HL
	RSA isolate %) positive	es tested for isolates	qacA/B b	9 PCR				
	%) positive							1

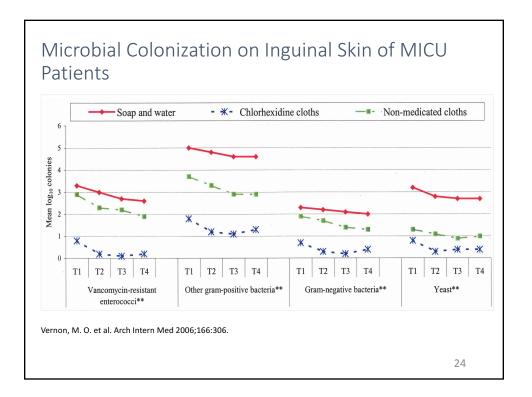

Resistant (XDR) A	cinetob		linical Isolates be	fore and after Implen = 50)		tchlorhexidine (n	
Hospital unit	n	Chlorhexidine consumption (L/unit/month)	Chlorhexidine MIC 50/90	Incidence of XDR A. baumannii per 1,000 patient-days	Chlorhexidine consumption (L/unit/month)	Chlorhexidine MIC 50/90	Incidence of XD A. baumannii pe 1,000 patient-day
Intensive care	70	2.4	32/32	12.5	15.5	64/128	2.9
General medicine	15	0.9	32/32	11.4	9.8	64/128	6.3
General surgical	10	0.5	16/32	9.6	4.5	64/128	4.6
Other*	5	0.1	16/32	1.2	2.5	64/128	0.6
• Bundled in	5 terve ral m	0.1 ention that in nedical & surg	16/32 cluded daily				

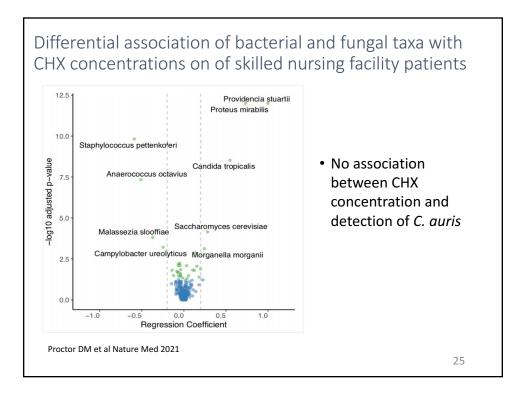

Reduction in CHG susceptibility after introduction of a bundled intervention to control XDR *A. baumannii* that included daily CHX bathing

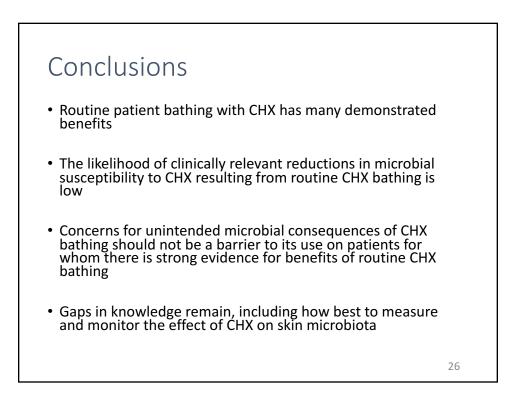

TABLE 1. Comparison of the Epidemiology of Chlorhexidine Minimum Inhibitory Concentrations (MICs) among Extensively Drug-Resistant (XDR) Acinetobacter baumannii Clinical Isolates before and after Implementation of Advanced Source Control


		Prechlorhexidine $(n = 50)$			Postchlorhexidine $(n = 50)$			
Hospital unit	1		Chlorhexidine MIC 50/90	Incidence of XDR <i>A. baumannii</i> per 1,000 patient-days	Chlorhexidine consumption (L/unit/month)	Chlorhexidine MIC 50/90	Incidence of XDR A. baumannii per 1,000 patient-days	
Intensive care	70	2.4	32/32	12.5	15.5	64/128	2.9	
General medicine	15	0.9	32/32	11.4	9.8	64/128	6.3	
General surgical	10	0.5	16/32	9.6	4.5	64/128	4.6	
Other*	5	0.1	16/32	1.2	2.5	64/128	0.6	
• Bundled in	terv	ention that i	ncluded dai	ly CHG bathing				
	ral n	nedical & sur		, 0	1			


TABLE 3 Genotypic chlorhexidin	e resistance by antimicrobial resis	tance		
/F	No. (%)			
	Clinical isolates $(n = 3)$	41)	Colonizing isolates (n =	= 274)
Antibiotic and phenotype	qacA/B negative ($n = 336$)	qacA/B positive (n = 5)	qacA/B negative ($n = 269$)	qacA/B positive (n = 5)
Ciprofloxacin ^a Susceptible Resistant	216 (100.0) 120 (96.0)	0 (0) 5 (4.0)	179 (100.0) 90 (94.7)	0 (0) 5 (5.3)
Clindamycin ^b Susceptible Resistant	302 (98.4) 34 (100.0)	5 (1.6) 0 (0)	225 (97.9) 44 (100.0)	5 (2.1) 0 (0)
Daptomycin Susceptible Resistant	335 (98.5) 0 (0)	5 (1.5) 0 (0)	269 (98.2) 0 (0)	5 (1.8) 0 (0)
Erythromycin Susceptible Resistant	35 (100.0) 301 (98.4)	0 (0) 5 (1.6)	32 (100.0) 237 (97.9)	0 (0) 5 (2.0)
Gentamicin Susceptible Resistant	334 (98.5) 1 (100.0)	5 (1.5) 0 (0)	268 (98.2) 1 (100.0)	5 (1.8) 0 (0)







Г

Change in ski after daily CH			n to discharge patients)		
	No change n (%)	Worsening n (%)	Improvement n (%)		
Soap & Water Bathing	250 (88)	18 (6.4)	17 (6)		
CHG Cloth Bathing	340 (86)	10 (2.3)	43 (10.8)		
P=0.02 Vernon, M. O. et al. Arch Intern Med 2006;166:306-312.					
			23		

W۱	ww.webbertraining.com/schedulep1.php
March 10, 2022	HAND HYGIENE: NOT JUST FOR HEALTH CARE WORKERS ANYMORE!! Speaker: Dr. Jocelyn Srigley, University of British Columbia
March 17, 2022	INFECTION CONTROL IN CORRECTIONAL FACILITIES Speaker: Nyreith Adeyemi, California Correctional Health Care Services
April 7, 2022	MANAGEMENT PRACTICES FOR LEADERS TO PROMOTE INFECTION PREVENTION Speaker: Dr. Ann Scheck McAlearney, Ohio State University College of Medicine
April 14, 2022	LIFECYCLE OF MOLECULAR MICROBIOLOGY DIAGNOSTIC TECHNOLOGY: COST VERSUS CLINICAL BENEFIT BEFORE BECOMING OBSOLETE Speaker: Professor Colum Dunne, School of Medicine, University of Limerick, Ireland
April 28, 2022	(<u>FREE Teleclass)</u> HOW DO WE IMAGINE OUR FUTURE? THE INFECTION PREVENTION "CRYSTAL BALL INITIATIVE" Speaker: Dr. Hugo Sax, HumanLabZ, Switzerland
May 5, 2022	(<u>FREE Teleclass)</u> SPECIAL LECTURE FOR WHO CLEAN HANDS DAY Speaker: Prof. Didier Pittet, University of Geneva Hospitals, Switzerland
May 12, 2022	PREVENTION AND MANAGEMENT OF POST-OPERATIVE SEPSIS

