Longitudinal genomic investigation of *Clostridiodes difficile* transmission in a densely sampled ICU cohort

Evan Snitkin, PhD

Associate Professor Department of Microbiology and Immunology Division of Infectious Diseases, University of Michigan

Hosted by Martin Kiernan

martin@webbertraining.com

www.webbertraining.com

October 17, 2024

Genomic epidemiology to study healthcareassociated pathogens

- Whole-genome sequencing (WGS) has revolutionized our ability to track the spread of pathogens
- The unprecedented resolution of WGS enables insights into whether two patients harbor pathogens that are plausibly linked by transmission in the facility
- In healthcare settings, WGS is increasingly being used in the context of routine infection prevention

Genomic epidemiology to study healthcareassociated pathogens

- Whole-genome sequencing (WGS) has revolutionized our ability to track the spread of pathogens
- The unprecedented resolution of WGS enables insights into whether two patients harbor pathogens that are plausible linked by transmission in the facility
- In healthcare settings, is increasingly being used in the context of routine infection prevention

Genomic epidemiology to study healthcareassociated pathogens

- Whole-genome sequencing (WGS) has revolutionized our ability to track the spread of pathogens
- The unprecedented resolution of WGS enables insights into whether two patients harbor pathogens that are plausible linked by transmission in the facility
- In healthcare settings, is increasingly being used in the context of routine infection prevention

Some genomic epidemiology jargon

- <u>Sequence type (ST)</u> a high-level classification of bacterial pathogens based on the sequence at ~7 genes
 - Used to track emerging threats at larger scales
 - Most transmission will be isolates of the same ST
- <u>Single nucleotide variants (SNVs)</u> Number of positions across the genome where two bacterial isolates vary
 - C. difficile has 4 million base pair genome with ~4,000 genes
 - The number of SNVs consistent with transmission varies by bacteria, but is typically less than 20 SNVs

Clostridioides difficile is a genetically and epidemiologically diverse pathogen

- Common ancestor of disease-causing lineages of *C. difficile* date back almost 400K years ago
- Strains can vary by hundreds of thousands of single nucleotide variants, and half their gene content
- *C. difficile* is a mix of toxigenic and non-toxigenic strains, with infection being caused by the toxin producers

Kumar et al., Adaptation of host transmission cycle during Clostridium difficile speciation, Nature Genetics 2019

Strains of C. difficile differ in their epidemiology

- Diverse strains underlying burden *C. difficile* infections in the U.S.
- NAP1 (ribotype 027/ST1) and NAP4 (ribotype 014-020/ST2) were historically the dominant strains in the U.S.
- ST1/027 enriched in healthcare facilities, ST2/014 has presence in both hospitals and community

Lessa, F. C. et al. Burden of Clostridium difficile Infection in the United States. New England Journal of Medicine 372, 825–834 (2015).

Strain	Community- Associated CDI (N = 735)	Health Care– Associated CDI (N=629)		
	no. of cases (%)			
NAPI	138 (18.8)	193 (30.7)		
NAP1-related†	13 (1.8)	20 (3.2)		
NAP2	13 (1.8)	10 (1.6)		
NAP3	3 (0.4)	12 (1.9)		
NAP4	84 (11.4)	65 (10.3)		
NAP5	3 (0.4)	6 (1.0)		
NAP6	56 (7.6)	27 (4.3)		
NAP7	25 (3.4)	13 (2.1)		
NAP7-related‡	2 (0.3)	2 (0.3)		
NAP8	5 (0.7)	1 (0.2)		
NAP9	22 (3.0)	9 (1.4)		
NAP10	21 (2.9)	15 (2.4)		
NAP11	79 (10.7)	63 (10.0)		
NAP12	9 (1.2)	16 (2.5)		
Unnamed§	245 (33.3)	163 (25.9)		
Could not be typed¶	17 (2.3)	14 (2.2)		

Clostridioides difficile has a presence in both community and healthcare settings

- While often thought of a hospital pathogen, toxigenic *C. difficile* has diverse community reservoirs
- While improvements in infection prevention practices and antibiotic stewardship have decreased healthassociated *C. difficile* infection (CDI), community-associated cases have remained flat

Guh et al. Trends in U.S. Burden of *Clostridioides difficile* Infection and Outcomes. New England Journal of Medicine, (2020).

How much of the burden of *C. difficile* infection in hospitals stems from healthcare transmission?

Prior work hints at an under-estimation of hospitalonset CDI stemming from admission colonization

- Seminal work showed that most isolates from CDI cases could not be genetically linked to prior case, indicating acquisition from unsampled reservoirs inside or outside the hospital¹
- Multiple studies support the risk of developing CDI in the hospital among those with asymptomatic carriage²
- However, it's unclear the degree to which asymptomatic carriage is acquired during or prior to hospital admission³
- 1. Eyre et al., Diverse Sources of C. difficile Infection Identified on Whole-Genome Sequencing, NEJM, 2013
- 2. Zacharioudakis et al., Colonization With Toxinogenic C. difficile Upon Hospital Admission, and Risk of Infection: A Systematic Review and Meta-Analysis, AJG, 2015
- 3. Kong et al., *Clostridium difficile*: Investigating Transmission Patterns Between Infected and Colonized Patients Using Whole Genome Sequencing ,CID, 2019

Studying transmission and infection using a densely sampled longitudinal cohort

Daily rectal surveillance for *C. difficile* carriage for all ICU patients over 9-month study

Overview of *C. difficile* samples recovered and whole-genome sequenced

Strain dynamics in the ICU over time

Overview of 425 *C. difficile* genome sequences isolated from 209 admissions

- All sequence types (STs), except ST3 harbored exclusively toxigenic or nontoxigenic strains
- 40 unique STs detected, with a total of 179 unique patient-ST combinations
- ST1 (ribotype 027) the 7th most prevalent ST, and only detected in 7 patients

Patients with multiple STs harbored a mix of toxigenic and non-toxigenic strains

- 13/86 (15%) admissions with multiple isolates had multiple STs detected
- Patients harbored tox/non-tox strains in different combinations (7 tox/tox, 5 tox/non-tox, 1 non-tox/non-tox)

Common strains of *C. difficile* were present in the unit throughout the study

Transmission dynamics in the ICU

In total, we detected 120 importation events and 51 culture acquisition events for *C. difficile*

	Screening prevalence	Importation prevalence	Culture acquisition prevalence	Incidence rate (acquisitions per 100 bed-days)
All C. difficile	209/1289 (16.3%)	120/1147 (10.5%)	51/563 (9%)	2.1
Toxigenic only	120/1289 (9.3%)	67/1147 (5.9%)	32/584 (5.5%)	1.6

Examining multi-strain colonization does not support protection from non-toxigenic strains

- 584 admissions qualified for acquisition analysis, of which 32 acquired toxigenic *C. difficile*
- 4 toxigenic acquisitions among 27 non-toxigenic importers (14.8%)
- 28 toxigenic acquisitions among 557 individuals with no *C. difficile* detected on admission (5.0%)
- Chi-squared p < 0.001

Genomic analysis of putative culture-based within unit acquisitions

Identifying a single nucleotide variant (SNV) threshold for detection of transmission

- Two common approaches to select SNV threshold, intra-patient diversity and epidemiologic enrichment
 - Maximal intra-patient diversity is used to set the upper limit on the number of SNVs detected between direct transmission pairs
 - Epidemiologic enrichment seeks to identify a threshold that maximizes consistency with shared exposures presumed to mediate transmission
- Previous work in *C. difficile* has established a 2 SNV threshold using both approaches

More than 95% of isolate pairs of the same ST, from the same patient are 2 SNV or less

Overlapping ICU admissions are enriched among patients whose isolates are below 2 SNVs

A minority of culture acquisitions have genomic linkages to another study isolate within the MICU

- Only 7/32 acquisitions linked within 2 SNVs to another isolate
- One of these was deemed to have weak support based on small genetic distances to epidemiologically unlinked isolates from outside RUMC
- Thus, 6/32 (19%) of culture acquisitions have a putative within unit source

How do we account for the other culture acquisitions that lack genomic linkages within the MICU?

- Transmission from MICU patients not enrolled in study?
- Transmission/exposure from outside MICU?
- Persistent environmental reservoir in the MICU?
- Multiple strains carried, but only one detected?
- False negative surveillance on admission?

Support for false negative surveillance #1: sporadic detection of *C. difficile* over time

- Among admissions with three samples, two of which were culture positive, 27/76 (36%) had at least one intervening culture negative
- Restricting to toxigenic strains, 14/36 (39%) admissions met this criteria

Support for false negative surveillance #2: preferential detection of OTU matching *C. difficile* in admission negative samples for future acquirers

- Compared prevalence of C. difficile associated OTU in culture-negative admission samples from patients who did and didn't go on to culture positive for C. difficile
- C. difficile-associated OTU preferentially observed in admission samples from patients who subsequently culture positive (p < 0.001)

Does colonization influence the risk for infection?

Colonization on admission is associated with subsequent episode of hospital-onset CDI

- 11 HO-CDI cases in MICU cohort were identified based on EHR record of diarrhea and PCR for *tcdB* on day 4 of hospitalization or later
- 2 cases in patients whom we did not detect *C. difficile* on admission, but did not qualify for acquisition analysis
- 3 cases in patients with culture-based acquisition, but only 1 of which had genomic support of within unit acquisition
- 6 cases in patients who were colonized with *C. difficile* on admission (HR 24.4, 95% CI 6.89-86.5, p < 0.001)

Summary and conclusions

- We identified <u>six</u> genomically supported cases of within MICU transmission of *C. difficile* among asymptomatic carriers over 9 months, leading to <u>one</u> documented case of HO-CDI
 - => suggests current infection prevention practices in the MICU are limiting within unit cross-transmission among asymptomatic carriers, given reservoir of 120 carriers
- Consistent with prior studies, we observed an <u>>20-fold</u> increased risk of HO-CDI in patients asymptomatically colonized with *C. difficile* on admission
 - => supports the contribution of transition from colonization to infection to HO-CDI
- Together, these findings support the contribution of asymptomatic carriage to HO-CDI in the MICU being primarily mediated by carriers themselves developing CDI, versus onward transmission to others

Limitations

- Study limited to single MICU in single healthcare setting
- Cannot rule out hospital acquisition via other routes beyond within-unit patient-to-patient transmission among asymptomatic cases (e.g. outside unit, shared procedure rooms, HCWs, environmental contamination)
- Did not track longer term incidence of CDI among patients acquiring C. difficile in the unit
- Study results likely would not translate to times or places where epidemic healthcare associated lineages (e.g. ST1/027) are circulating at high prevalence

Implications of these results on infection prevention

- These results support the ability to prevent cross-transmission of *C. difficile* within a unit with effective measures
 - Single rooms, cleaning with sporicidal agents
- These results support the importance of understanding triggers of the transition from colonization to infection
 - Specific antibiotics, other medications
- These results support the value of whole-genome sequencing in understanding putative transmission among colonized and infected individuals in hospitals
 - Apparent transmission clusters can be conclusively ruled out

Acknowledgements

Mary Hayden, MD

Vincent Young, MD, PhD

Arianna Miles-Jay, PhD

Acknowledgements

Snitkin lab *Arianna Miles-Jay

Lisa Lojek Dhatri Badri Timi Adediran Chaitra Shankar Stuart Castaneda Kyle Gontjes Tasmine Clement Auden Bahr Tiffany Wan Grace Musai Anita Tan Aryan Singh

<u>UM</u>

Vincent Young Christine Bassis Micah Keidan Alexandra Standke

Funding

CDC Epicenters NIH Sys Bio program

RUMC

Mary Hayden Michael Lin Teppei Shimasaki Michael Schoeny Christine Fukuda Thelma Dangana Nicholas Moor Sarah Sansom Rachel Yelin Pamela Bell

www.webbertraining.com/schedulep1.php		
October 18, 2024	(FREE European Teleclass) SPECIAL LECTURE FOR CLEAN HOSPITALS DAY Speaker: Prof. Didier Pittet, University of Geneva, Switzerland	
October 23, 2024	(Australasian Teleclass) CLOSTRIDIUM DIFFICILE INFECTION – ONE HEALTH AND THE RISE IN COMMUNITY- ASSOCIATED INFECTION Speaker: Prof. Tom Riley, The University of Western Australia	
October 24, 2024	(<u>FREE Teleclass)</u> WHY CERTIFY? THE VALUE OF CERTIFICATIONIN INFECTION PREVENTION AND CONTROL Speaker: Shazia Irum, CBIC Ambassador, Saudi Arabia	
November 7, 2024	AN ETHICAL FRAMEWORK FOR SMART SANITATION TECHNOLOGY AS A PUBLIC HEALTH TOOL Speaker: Prof. Maria Carnovale, Johns Hopkins School of Advanced International Studies	
	(European Teleclass)	

NURSES IN ANTIMODODIAL STEWARDSHIP INTERVENTIONS - MISSING

Thanks to Teleclass Education PATRON SPONSORS

diversey.com

virox.com

gamahealthcare.com