


# Chlorhexidine Use and Bacterial Resistance



#### **Jean-Yves Maillard**

Cardiff School of Pharmacy and Pharmaceutical Sciences Cardiff University

**Hosted by Dr. Lynne Sehulster** 



#### **OVERVIEW**

- Background
- Bacterial responses to biocides
- Bacterial resistance to chlorhexidine *in situ*
- Bacterial resistance to chlorhexidine in vitro
- Reality check
- Conclusions





# **BACKGROUND**



# **BACKGROUND:** context - biocide usage

#### **DISINFECTION**

Surface Liquid Materials (wipes)

#### **ANTISEPSIS**

Antimicrobial gel/liquid dressings

# DOMESTIC PRODUCTS

Washing liquid Washing up liquid Chopping board

# ANTIMICROBIAL' SURFACES

Environmental Medical (Implant)

#### **PRESERVATION**

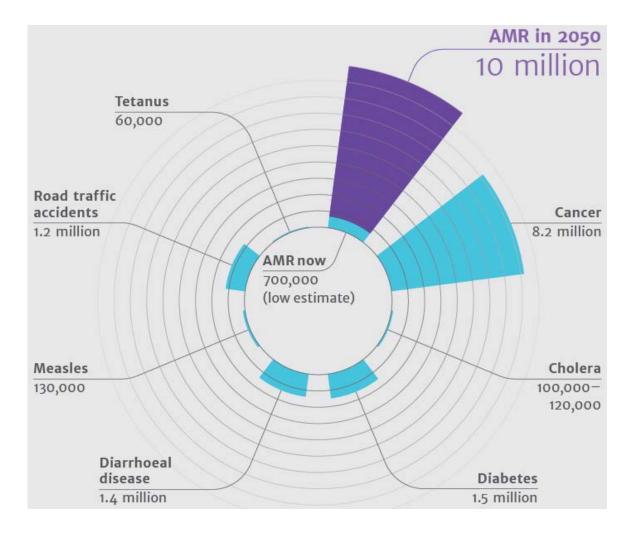
Wood Plastic textiles

#### **PRESERVATION**

Food Pharmaceutical



# **BACKGROUND:** persistence


| Organism                                                     | Persistence          |
|--------------------------------------------------------------|----------------------|
| Acinetobacterspp.                                            | 3 days to 5 months   |
| Clostridium difficile (spores)                               | 5 months             |
| Enterococcus spp. including vancomycin-resistant enterococci | 5 days to 4 months   |
| Escherichia coli                                             | 1.5 h to 16 months   |
| Klebsiella spp.                                              | 2 h to>30 months     |
| Mycobacterium tuberculosis                                   | 1 day to 4 months    |
| Pseudomonas aeruginosa                                       | 6 h to 16 months     |
| Salmonella typhimurium                                       | 10 days to 4.2 years |
| Shigellaspp.                                                 | 2 days to 5 months   |
| Staphylococcus aureus, including MRSA                        | 7 days to 7 months   |
| Haemophilus influenzae                                       | 12 days              |

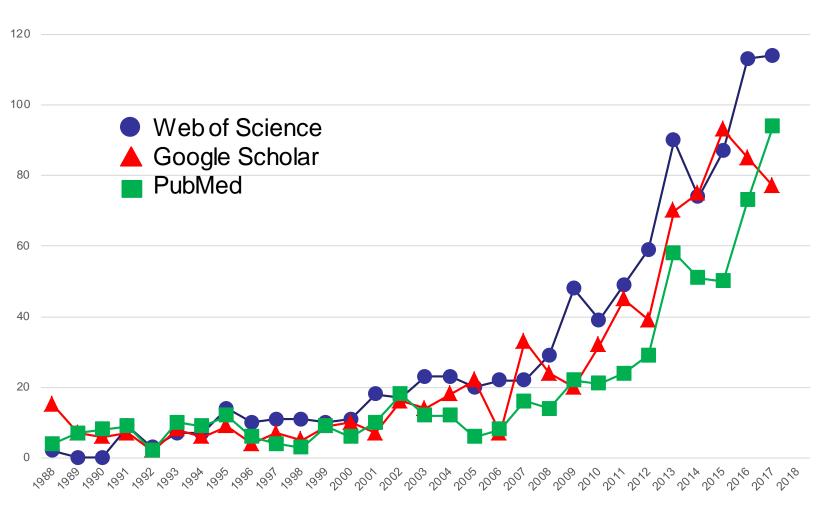




#### **BACKGROUND:** end of antibiotic era?

# Deaths per annum worldwide




O'Neill. 2016. Tackling drug-resistant infections globally: Final report and recommendations. The Review Antimicrobial resistance. HM Government.

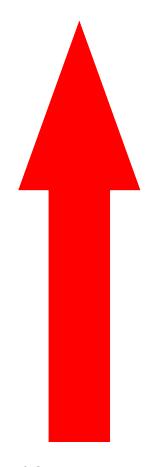


#### **BACKGROUND: CHX RESISTANCE**

#### Peer-reviewed articles / reviews since 1998

Title and abstract: chlorhexidine + resistance










Intrinsic resistance

#### **Resistance to Biocides**



- prions
- bacterial spores
- protozoal oocysts
- mycobacteria
- naked viruses
- protozoal cysts
- vegetative Gram- negative
- fungi
- protozoa
- vegetative Gram-positive
- enveloped viruses



**Exceptions** 

**Exceptions** 

**Exceptions** 

**Exceptions** 

#### Bacteria – biocide interactions

#### DEGREE OF DAMAGE AND AUTOCIDAL ACTIVITY

- Disruption of the transmembrane PMF leading to an uncoupling of oxidative phosphorylation and inhibition of active transport across the membrane
- Inhibition of respiration or catabolic/anabolic reactions
- Disruption of metabolic processes
- Disruption of replication
- Loss of membrane integrity resulting in leakage of essential intracellular constituents (K+, inorganic phosphate, pentoses, nucleotides and nucleosides, proteins)
- Coagulation of intracellular materials

#### > LYSIS

#### **CONSEQUENCES**

Short exposure

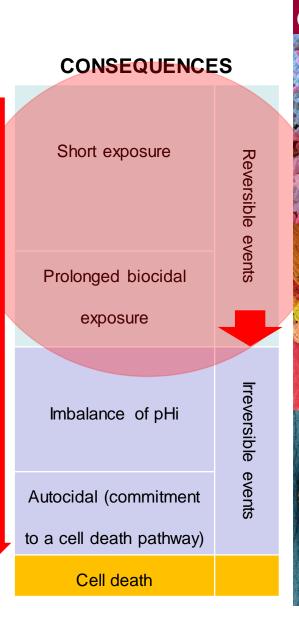
Prolonged biocidal

exposure

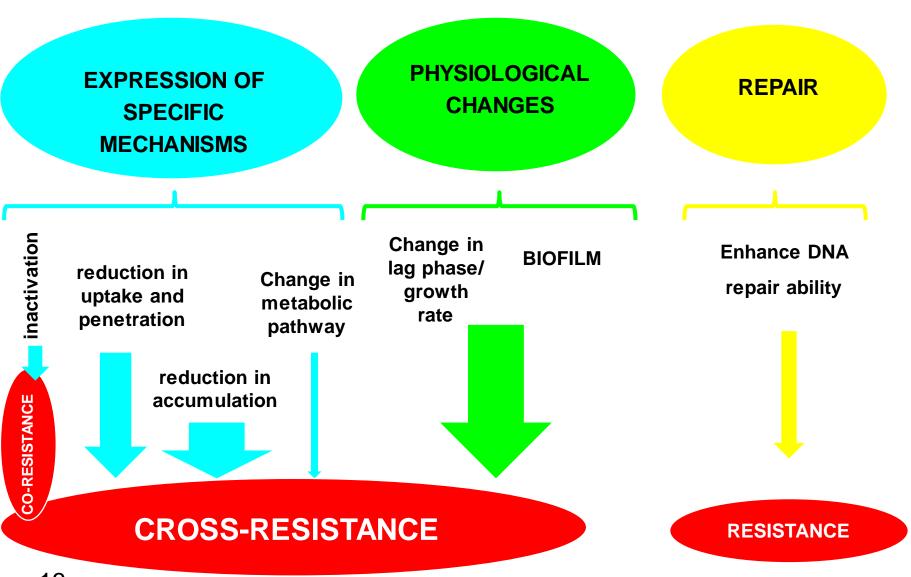
Imbalance of pHi

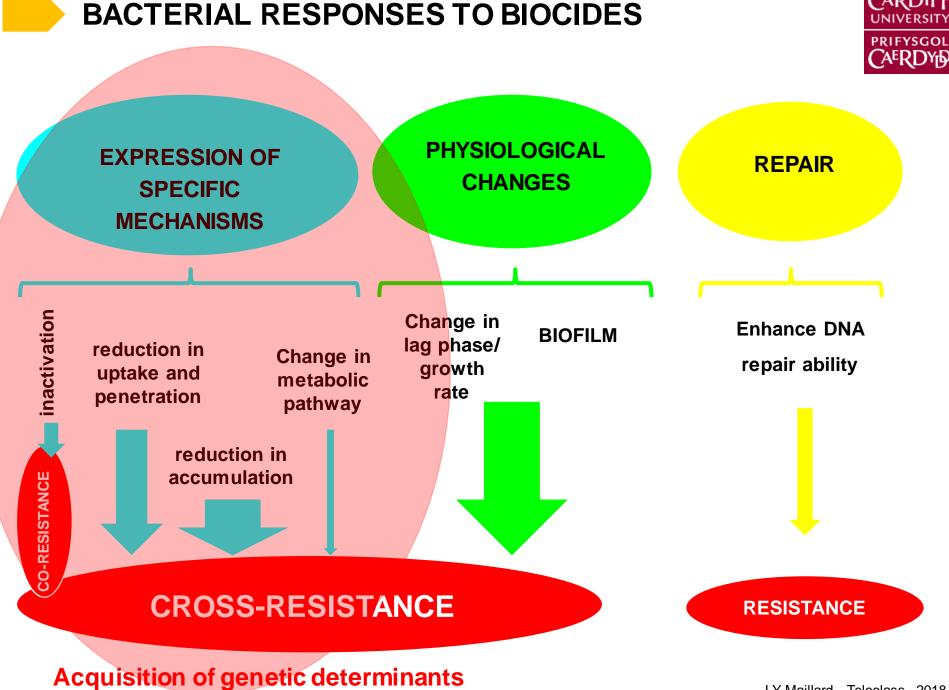
Autocidal (commitment to a cell death pathway)

Cell death




#### Bacteria – biocide interactions


#### DEGREE OF DAMAGE AND AUTOCIDAL ACTIVITY


- Disruption of the transmembrane PMF leading to an uncoupling of oxidative phosphorylation and inhibition of active transport across the membrane
- Inhibition of respiration or catabolic/anabolic reactions
- Disruption of metabolic processes
- Disruption of replication
- Loss of membrane integrity resulting in leakage of essential intracellular constituents (K<sup>+</sup>, inorganic phosphate, pentoses, nucleotides and nucleosides, proteins)
- Coagulation of intracellular materials

#### > LYSIS









J-Y Maillard - Teleclass, 2018



#### CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

## Changes in membrane properties

#### REDUCTION IN PENETRATION

Journal of Applied Microbiology 1999, 87, 323-331

# Comparative responses of *Pseudomonas stutzerl* and *Pseudomonas aeruginosa* to antibacterial agents

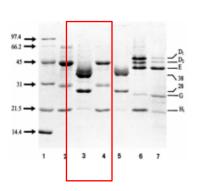
U. Tattawasart, J.-Y. Maillard, J.R. Furr and A.D. Russell Welsh School of Pharmacy, Cardiff University, Cardiff, UK

7133/03/99: received 31 March 1999, accepted 21 April 1999

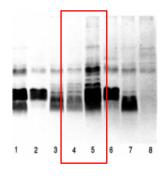


International Journal of Antimicrobial Agents 16 (2000) 233-238




www.ischemo.org

Outer membrane changes in *Pseudomonas stutzeri* resistant to chlorhexidine diacetate and cetylpyridinium chloride


Unchalee Tattawasart, J.-Y. Maillard, J.R. Furr, A.D. Russell \*

#### Change in LPS, reduction of porins

OMP profile



LPS profile



ACCV GPR Magn Dol Gp 1- Accv G



- Pseudomonas stutzeri with decreased MIC to chlorhexidine and CPC
- Cross-resistance to polymyxin and gentamicin



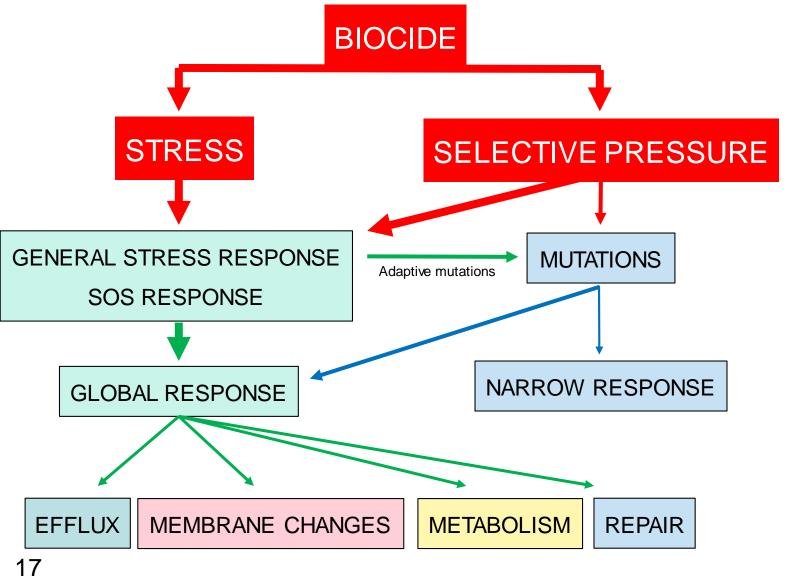


#### Reduction in antimicrobial accumulation

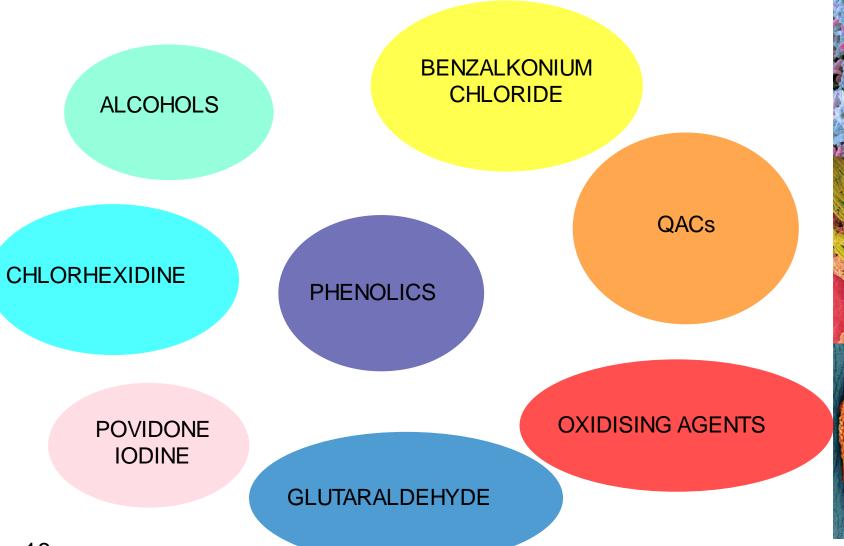
Nature Reviews Microbiology 4, 629-636 (August 2006) | doi:10.1038/nrmicro1464

OPINION

Multidrug-resistance efflux pumps? not just for resistance


Laura J. V. Piddock $\frac{1}{2}$  About the author

ton 4


Cytoplasm

avine Benzalkonium Cetrimide

Stress response and selective pressure



Reports of bacterial resistance from 1958!





• Resistance: surviving exposure to a biocide concentration that will kill the rest of the population

Russell. Lancet Infect Dis 2003; 3: 794-803

 Resistance in practice: Bacterial survival following biocide challenge at "in use"/ "during use" concentration.

> Maillard & Denyer. Chem Oggi 2009; 27: 26-8. Maillard et al. Micro Drug Resist 2013; 19:344-54. Wesgate et al. AJIC 2016, 44, 458-464.

- Reduced susceptibility: increase in MBC comparing to the initial population or a reference strain
  - For data based on MIC changes: increase in MIC
- Tolerance: inhibited but not killed
  - survival in a product (preservative system)
- Cross-resistance: Bacterial survival following biocide challenge at "in use"/ "during use" concentration **AND** to unrelated antimicrobials; may include emerging clinical resistance to chemotherapeutic antibiotics

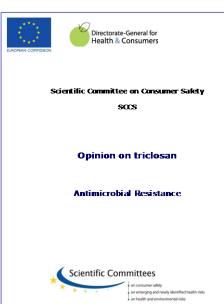




# Regulators

### **European Commission Opinions**

 SCENIHR 2009: Assessment of the Antibiotic Resistance Effects of Biocides.


http://ec.europa.eu/health/ph\_risk/committees/04\_scenihr/docs/scenihr\_o\_021.pdf

 SCENIHR 2010: Research strategy to address the knowledge gaps on the antimicrobial resistance effects of biocides.

http://ec.europa.eu/health/scientific\_committees/emerging/docs/scenihr\_o\_028.pdf

- SCCS 2011: Opinion on Triclosan Antimicrobial Resistance.
  - http://ec.europa.eu/health/scientific\_committees/consumer\_safety/docs/sccs\_o\_023.pdf
- SCENIHR 2014: Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. http://ec.europa.eu/health/scientific\_committees/emerging/docs/scenihr\_o\_039.pdf









# Regulators

#### **Biocide Products Regulation ... and resistance** (effective since 1/09/2013)

1-b(ii) ...the biocidal product has no unacceptable effects on the target organisms, in particular unacceptable resistance or cross-resistance

3-b ...the chemical diversity of the active substances is adequate to minimise the occurrence of resistance in the target harmful organism.

#### Effects on target organisms

75. Where the development of resistance or cross-resistance to the active substance in the biocidal product is likely, the evaluating body shall consider actions to minimise the consequences of this resistance. This may involve modification of the conditions under which an authorisation is given. However, where the development of resistance or cross-resistance cannot be reduced sufficiently, the evaluating authority shall conclude that the biocidal product does not satisfy criterion (ii) under point (b) of Article 19(1).



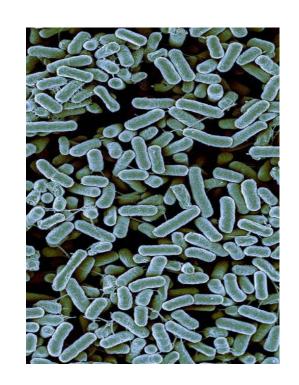


## Regulators

#### U.S. Food and Drug Administration (Press release 2<sup>nd</sup> September 2016)

FDA issues final rule on safety and effectiveness of antibacterial soaps

The agency issued a proposed rule in 2013 after some data suggested that long-term exposure to certain active ingredients used in antibacterial products — for example, triclosan (liquid soaps) and triclocarban (bar soaps) — could pose health risks, such as bacterial resistance...This included data from clinical studies demonstrating that these products were superior to non-antibacterial washes in preventing human illness or reducing infection


"...some data suggest that long-term exposure to certain active ingredients used in antibacterial products—for example, triclosan (liquid soaps) and triclocarban (bar soaps)—could pose health risks, such as bacterial resistance ..."

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm517478.htm (accessed 19/09/2018)





# BACTERIAL RESISTANCE TO CHLORHEXIDINE *IN SITU*



# **CHX** applications

#### SKIN PREPARATIONS

- Skin care 2%
- Hand hygiene ± alcohol
- Patient preoperative scrub and showers (combined with alcohol)
- Vascular access site dressings (chlorhexidine sponge dressing and a chlorhexidine gel pad)
  - Vascular access such as central venous catheters, skin preparation solutions and insertion site dressings are recommended as interventions that may prevent Central Line-Associated Bloodstream Infections (CLABSIs)
  - Vascular access catheters
  - Peripherally Inserted Central venous catheter

#### **DEVICES**

- Central Venous catheter CHX impregnated catheters (intraluminally and extraluminally)
- Needleless IV connectors (combined chlorhexidine and silver)

#### **SOLUTIONS**

- Oral care mouthwash
- Urology bladder irrigation 0.005%





#### CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

# **CHX** applications

| Products                                                                   | Concent -ration             | Additional biocides              | Uses                                                                                                                                                                                                   |
|----------------------------------------------------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topical medicines (gel or liquid)                                          | 7.1%                        | None                             | Umbilical cord care to prevent cord infection and/or sepsis and reduce neonatal mortality.                                                                                                             |
| Topical solution<br>(liquid, cloth, sponge<br>applicators, swab<br>sticks) | 2% ,<br>3.15%, 4%,<br>or 5% | Isopropyl alcohol                | Skin preparation for surgery, invasive procedures, central lines to prevent hospital- acquired infections                                                                                              |
| Scrub solution (liquid detergent)                                          | 2% or 4%                    | Isopropyl alcohol                | <ul> <li>Preoperative bathing, general skin cleansing to prevent hospital-acquired infection</li> <li>Preoperative hand scrub and hand disinfection to prevent the spread of microorganisms</li> </ul> |
| Irrigation solution                                                        | 0.015% or<br>0.05%          | Cetrimide                        | Irrigation of wounds to prevent infection                                                                                                                                                              |
| Topical cream                                                              | 0.1%                        | Cetostearyl alcohol<br>Cetrimide | Wound cleaning (over-the-counter first-aid cream) to prevent infection                                                                                                                                 |
| Washcloth                                                                  | 2%                          | none                             | Daily bathing in intensive care unit (ICU) patients to prevent hospital-acquired infection                                                                                                             |
| Gauze dressing                                                             | 0.5%                        | -                                | Wound or burn dressing to prevent infection                                                                                                                                                            |
| Catheter dressing                                                          | 2%                          | None                             | Catheter dressings to prevent hospital- (gel pad, foam disk, semi-acquired infection permeable transparent dressing)                                                                                   |
| Hand rub (gel)                                                             | 0.5% or 1%                  | Ethanol                          | Hand sanitizing to prevent the spread of microorganisms                                                                                                                                                |
| Dental solution                                                            | 0.12% or<br>0.2%            | Ethanol                          | <ul> <li>Decontaminate oral cavity to prevent (oral rinse or spray)</li> <li>Periodontal disease and mucositis treatment</li> </ul>                                                                    |
| Concentrated stock solution                                                | 20%                         | None                             | Preparation of dilutions for skin cleansing and general disinfection                                                                                                                                   |

https://www.healthynewbornnetwork.org/hnn-content/uploads/CWG-Chlorhexidine-Applications-English October 2015.pdf

(accessed 19-09-2018)

J-Y Maillard – Teleclass, 2018





# CHX applications

| Products                                                                   | Concent -ration                           | Additional biocides              | Uses                                                                                                                                                                                                   |
|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topical medicines (gel or liquid)                                          | 7.1%                                      | None                             | Umbilical cord care to prevent cord infection and/or sepsis and reduce neonatal mortality.                                                                                                             |
| Topical solution<br>(liquid, cloth, sponge<br>applicators, swab<br>sticks) | 2% ,<br>3.15%, 4 <mark>%,</mark><br>or 5% | Isopropyl alcohol                | Skin preparation for surgery, invasive procedures, central lines to prevent hospital- acquired infections                                                                                              |
| Scrub solution (liquid detergent)                                          | 2% or 4 <mark>%</mark>                    | Isopropyl alcohol                | <ul> <li>Preoperative bathing, general skin cleansing to prevent hospital-acquired infection</li> <li>Preoperative hand scrub and hand disinfection to prevent the spread of microorganisms</li> </ul> |
| Irrigation solution                                                        | 0.015% or<br>0.05%                        | Cetrimide                        | Irrigation of wounds to prevent infection                                                                                                                                                              |
| Topical cream                                                              | 0.1%                                      | Cetostearyl alcohol<br>Cetrimide | Wound cleaning (over-the-counter first-aid cream) to prevent infection                                                                                                                                 |
| Washcloth                                                                  | 2%                                        | none                             | Daily bathing in intensive care unit (ICU) patients to prevent hospital-acquired infection                                                                                                             |
| Gauze dressing                                                             | 0.5%                                      | -                                | Wound or burn dressing to prevent infection                                                                                                                                                            |
| Catheter dressing                                                          | 2%                                        | None                             | Catheter dressings to prevent hospital- (gel pad, foam disk, semi-acquired infection permeable transparent dressing)                                                                                   |
| Hand rub (gel)                                                             | 0.5% or 1 <mark>%</mark>                  | Ethanol                          | Hand sanitizing to prevent the spread of microorganisms                                                                                                                                                |
| Dental solution                                                            | 0.12% or<br>0.2%                          | Ethanol                          | <ul> <li>Decontaminate oral cavity to prevent (oral rinse or spray)</li> <li>Periodontal disease and mucositis treatment</li> </ul>                                                                    |
| Concentrated stock solution                                                | 20%                                       | None                             | Preparation of dilutions for skin cleansing and general disinfection                                                                                                                                   |



# CHX contaminated products and infections

| Contaminant(s)            | Site(s) of microbes   | Mechanism of contamination/source                                       |
|---------------------------|-----------------------|-------------------------------------------------------------------------|
| Pseudomonas spp.          | Not stated            | Refilling contaminated bottles; washing used bottles using cold tap     |
|                           |                       | water; contaminated washing apparatus; low concentration (0.05%)        |
| Pseudomonas sp., Serratia | Not stated            | Not determined, but authors speculate due to over-dilution or refilling |
| marcescens,               |                       | of contaminated bottles                                                 |
| Flavobacterium sp.        |                       |                                                                         |
| Pseudomonas aeruginosa    | Wounds                | Tap water used to dilute stock solutions; low concentration (0.05%)     |
| Bulkholderia cepacia      | Blood, wounds, urine, | Metal pipe and rubber tubing in pharmacy through which deionized        |
|                           | mouth, vagina         | water passed during dilution of chlorhexidine; low concentration        |
| Ralstonia pickettii       | Blood                 | Contaminated bidistilled water used to dilute chlorhexidine; low        |
|                           |                       | concentration (0.05%)                                                   |
| Ralstonia pickettii       | Blood (pseudo-        | Distilled water used to dilute chlorhexidine; low concentration         |
|                           | bacteremia)           | (0.05%)                                                                 |
| Serratia marcescens       | Bood, urine, wounds,  | Not determined, but use of nonsterile water for dilution to 2% and      |
|                           | sputum, others        | distribution in reusable nonsterile containers                          |
| Ralstonia pickettii       | Blood                 | Distilled water used to dilute chlorhexidine; low concentration         |
|                           | (pseudobacteremia)    | (0.05%)                                                                 |
| Bulkholderia cepacia      | Blood                 | Intrinsic contamination, Contaminated 0.5% chlorhexidine                |
| Serratia marcescens       | Blood                 | Intrinsic contamination, 2% aqueous chlorhexidine antiseptic            |





# CHX contaminated products and infections



Antimicrob Agents Chemother. 2007 Dec; 51(12): 4217–4224. Published online 2007 Oct 1. doi: 10.1128/AAC.00138-07 PMCID: PMC2167968

Outbreaks Associated with Contaminated Antiseptics and

Disinfectants<sup>™</sup>

David J. Weber, 1,2,\* William A. Rutala, 1,2 and Emily E. Sickbert-Bennett 1

| Antiseptic                   | Contaminants                                                                                                     | Mechanisms of contamination/source                                                                                                                                                             |
|------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alcohols                     | B. cereus, B. cepacia                                                                                            | Intrinsic contamination, contaminated tap water                                                                                                                                                |
| Chlorhexidine                | Pseudomonas spp., B. cepacia, Flavobacetrium spp., Ralsonia pickettii, Achromobacter xylosoxidans, S. marcescens | Refilling contaminated bottle, contaminated washing apparatus (0,05%), Topping up stock solution (1:1000-1:5000), metal pipe (low concentration), contaminated water (0.05%), atomizer (0.06%) |
| Chlorhexidine<br>+ cetrimide | Ps. multivorans, St.<br>maltophilia                                                                              | Tap water (0.05% CHX & 0.5% cetrimide), contaminated deionized water                                                                                                                           |



# BACTERIAL RESISTANCE TO CHLORHEXIDINE *IN VITRO*



## Artificial decrease in CHX susceptibility

doi:10.1053/jhin.2000.0851, available online at http://www.idealibrary.com on IDE L®



Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a 'residual' concentration

Louise Thomas, J.-Y. Maillard, R. J.W. Lambert\* and A. D. Russell

Pharmaceutical Microbiology Research, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3XF and \*Unilever Research Colworth, Sharnbrook, Bedfordshire, UK

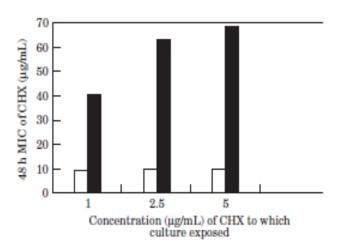



Figure 2 MICs in broth at 37°C of P. deruginosa following single exposure to 'residual' concentrations of CHX of 1, 2.5 and 5 µg/mL. □, before exposure to CHX; ■, after exposure to CHX.

MICs of Ps aeruginosa cultures following repeated exposure to CHX (5 µg/mL)

| Culture<br>number | Original MIC (µg/mL) before multiple exposure to CHX (5 µg/mL) | MIC (µg/mL CHX) after 5 subcultures in CHX (µg/mL) |
|-------------------|----------------------------------------------------------------|----------------------------------------------------|
| 1a                | 8-10                                                           | >70°                                               |
| 2                 | 28 <sup>b</sup>                                                | >70°                                               |
| 3                 | >40 <sup>b</sup>                                               | >70°                                               |
| 4                 | >50 <sup>b</sup>                                               | >70°                                               |
| 5                 | 70 <sup>b</sup>                                                | >70°                                               |

a: standard parent strain

c: these cultures were found stable after 15 subcultures in CHX-free broth



b: cultures from step-wise training method





# Decreased susceptibility following short CHX exposure

Salmonella enterica 1344 susceptibility following a 5 min exposure to CHG or BZC

#### Mean MBC (%)

| Biocide | Baseline | 0.0004 %<br>CHG | 0.0001 %<br>CHG | 0.00005 %<br>CHG | 0.0004 %<br>BZC | 0.0001 %<br>BZC | 0.00005 %<br>BZC |
|---------|----------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|
| CHG     | 0.01     | 0.20 ± 0.00     | $0.20 \pm 0.09$ | $0.04 \pm 0.00$  | $0.30 \pm 0.00$ | $0.20 \pm 0.00$ | 0.20 ± 0.10      |
| BZC     | 0.003    | 0.20 ± 0.00     | 0.05 ± 0.02     | 0.20 ± 0.20      | $0.80 \pm 0.00$ | 0.20 ± 0.00     | 0.30 ± 0.20      |

GREEN = increased MBC by 10-50 folds RED = >50 folds





# Decreased susceptibility following short CHX exposure

Salmonella enterica 1344 susceptibility following a 5 min exposure to CHG or BZC

#### Mean MBC (%)

| Biocide | Baseline | 0.0004 %<br>CHG | 0.0001 %<br>CHG | 0.00005 %<br>CHG | 0.0004 %<br>BZC | 0.0001 %<br>BZC | 0.00005 %<br>BZC |
|---------|----------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|
| CHG     | 0.01     | 0.20 ± 0.00     | $0.20 \pm 0.09$ | $0.04 \pm 0.00$  | $0.30 \pm 0.00$ | $0.20 \pm 0.00$ | 0.20 ± 0.10      |
| BZC     | 0.003    | 0.20 ± 0.00     | 0.05 ± 0.02     | 0.20 ± 0.20      | $0.80 \pm 0.00$ | 0.20 ± 0.00     | 0.30 ± 0.20      |

GREEN = increased MBC by 10-50 folds RED = >50 folds

#### Reproducibility

CHG exposure: 0.0004 % for S. enterica 1344 and 0.0001 % for S. enterica 14028S

|        | Baseline<br>MIC | CHG<br>MIC 1 | CHG<br>MIC 2 | CHG<br>MIC 3 | CHG<br>MIC 4 | Baseline<br>MBC | CHG<br>MBC 1 | CHG<br>MBC 2 | CHG<br>MBC 3 | CHG<br>MBC 4 |
|--------|-----------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|
| 1344   | 0.003           | 0.08         | 0.06         | 0.06         | 0.067        | 0.01            | 0.20         | 0.10         | 0.10         | 0.15         |
| 14028S | 0.003           | 0.01         | 0.02         | 0.03         | 0.01         | 0.006           | 0.10         | 0.09         | 0.09         | 0.2          |



# Decreased susceptibility following short CHX exposure

Journal of Applied Microbiology

Journal of Applied Microbiology ISSN 1364-5072

ORIGINAL ARTICLE

2013

The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium

L. Knapp<sup>1</sup>, L. Rushton<sup>2</sup>, H. Stapleton<sup>3</sup>, A. Sass<sup>4</sup>, S. Stewart<sup>5</sup>, A. Amezquita<sup>5</sup>, P. McClure<sup>5</sup>, E. Mahenthiralingam<sup>2</sup> and J.-Y. Maillard<sup>1</sup>

| Burkholderia lata 383   |       |               |       | N         | umber of p | oassages        |      |       |
|-------------------------|-------|---------------|-------|-----------|------------|-----------------|------|-------|
| Baseline susceptibility |       |               | W     | ithout Cl | HG         | With CHG 0.004% |      |       |
|                         |       | 5 min CHG exp | 1     | 5         | 10         | 1               | 5    | 10    |
| CHG MBC (%)             | 0.01  | 0.5           | 0.008 | 0.009     | 0.006      | 0.15            | 0.1  | 0.01  |
| BZC MBC (%)             | 0.003 | 0.15          | 0.004 | 0.006     | 0.006      | 0.019           | 0.05 | 0.006 |





# Decreased susceptibility following short CHX exposure

Journal of Applied Microbiology

Journal of Applied Microbiology ISSN 1364-5072

ORIGINAL ARTICLE

2013

The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium

L. Knapp<sup>1</sup>, L. Rushton<sup>2</sup>, H. Stapleton<sup>3</sup>, A. Sass<sup>4</sup>, S. Stewart<sup>5</sup>, A. Amezquita<sup>5</sup>, P. McClure<sup>5</sup>, E. Mahenthiralingam<sup>2</sup> and J.-Y. Maillard<sup>1</sup>

| Burkholderia lata 38    | 33    |               |       | Number of passages |       |                 |      |       |  |  |
|-------------------------|-------|---------------|-------|--------------------|-------|-----------------|------|-------|--|--|
| Baseline susceptibility |       |               | W     | ithout Cl          | HG    | With CHG 0.004% |      |       |  |  |
|                         |       | 5 min CHG exp | 1     | 5                  | 10    | 1               | 5    | 10    |  |  |
| CHG MBC (%)             | 0.01  | 0.5           | 0.008 | 0.009              | 0.006 | 0.15            | 0.1  | 0.01  |  |  |
| BZC MBC (%)             | 0.003 | 0.15          | 0.004 | 0.006              | 0.006 | 0.019           | 0.05 | 0.006 |  |  |

| Salmonella enterica 14028S |       | Number of passages |       |           |       |                 |      |       |  |
|----------------------------|-------|--------------------|-------|-----------|-------|-----------------|------|-------|--|
|                            |       |                    | w     | ithout Ch | IG    | With CHG 0.004% |      |       |  |
| Baseline susceptibility    |       | 5 min CHG exp      | 1     | 5         | 10    | 1               | 5    | 10    |  |
| CHG MBC (%)                | 0.006 | 0.5                | 0.001 | 0.006     | 0.009 | 0.08            | 0.08 | 0.006 |  |
| BZC MBC (%)                | 0.008 | 0.3                | 0.006 | 0.007     | 0.006 | 0.019           | 0.02 | 0.008 |  |



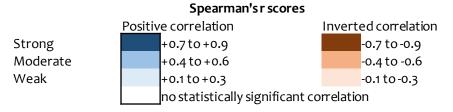


## Cross-resistance between CHX and antibiotics

| Bactérie                   | Antibiotiques                                                   | Référence                     |  |  |  |
|----------------------------|-----------------------------------------------------------------|-------------------------------|--|--|--|
| Staphylococcus aureus      | Quinolones<br>Beta-lactames<br>Macrolides                       | Oggioni et al 2015            |  |  |  |
| Acinetobacter baumannii    | Carbapénème<br>Aminoglycoside<br>Tétracycline<br>Ciprofloxacine | Fernandez-Cuenca et al, 2015  |  |  |  |
| Pseudomonas spp.           | Ciprofloxacine<br>Norfloxacine<br>Tobramycine<br>Gentamicine    | Gajadhar et al, 2003          |  |  |  |
| Pseudomonas aeruginosa     | Antibiotiques multiples                                         | Sekiguchi <i>et al</i> , 2005 |  |  |  |
| Escherichia coli           | Antibiotiques multiples                                         | Nakahara & Kosukoe 1981       |  |  |  |
| Staphylococcus aureus      | Antibiotiques multiples                                         | Conceicao et al, 2015         |  |  |  |
| Staphylococcus epidermidis | Oxacilline<br>Gentamicine                                       | Cook et al, 2007              |  |  |  |
| Staphylococcus warneri     | Rifampicine                                                     | Cook et al, 2007              |  |  |  |



СНХ


BZC

CS

SN

# CHX and carbapenem resistance

- > 160 K. pneumoniae
- ➤ 50 E. coli
- 69 hospitals
- July 2010 to August 2015
- Rectal swabs, urine samples, faeces, blood cultures



|     |     | СНХ |     | BZC |     | CS  |     | SN  |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     | MIC | мвс | MIC | мвс | MIC | мвс | MIC | мвс |
| снх | MIC |     |     |     |     |     |     |     |     |
|     | мвс |     |     |     |     |     |     |     |     |
| BZC | MIC |     |     |     |     |     |     |     |     |
|     | мвс |     |     |     |     |     |     |     |     |
| cs  | MIC |     |     |     |     |     |     |     |     |
|     | мвс |     |     |     |     |     |     |     |     |
| SN  | MIC |     |     |     |     |     |     |     |     |
|     | мвс |     |     |     |     |     |     |     |     |



**PRIFYSGOL** 

#### Cross-resistance between CHX and antibiotics

| Bacteria<br>Source of<br>isolates     | Biocide<br>exposure                    | Resistance to unrelated biocides                         | Resistance to antibiotics                                     | Mechanisms                                                                            |
|---------------------------------------|----------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Burkholderia lata                     | CHG (0.005%)<br>BZC (0.005%)           | No significant change in MIC or MBC to CHG or BZC        | Decrease in susceptibility to CAZ, CIP, IMP                   | Upregulation of outer membrane protein and ABC transporter                            |
| S. aureus                             | TRI (0.0004%)                          | Increase in MIC and MBC to TRI                           | Resistance to CIP, AMP                                        | ND                                                                                    |
| E. coli                               | CHG (0.0004%)                          | No change in MIC or MBC to CHG                           | Resistance to TOB, TIC, AMP                                   | ND                                                                                    |
| S. aureus                             | H <sub>2</sub> O <sub>2</sub> (0.001%) | No change in MIC or MBC to H <sub>2</sub> O <sub>2</sub> | Resistance to CIP, AMP                                        | ND                                                                                    |
| Clinical isolates of <i>S. aureus</i> | In situ                                | High MIC to CHG                                          | Resistance CEF, RIF, TSX, CHL                                 | Efflux: qacAB                                                                         |
| Acinetobacter<br>baumannii            | CHG (4%)                               | Increased MIC to CHG                                     | Resistance to<br>CIP, IMP, MEM,<br>GEN, TOB,<br>NEL, TET, DOX | Efflux: increased expression in adeb, abeS, amvA Porins: decreased expression in ompA |
| Acinetobacter<br>baumannii            | BZC (0.1%)                             | Increased MIC to BZC                                     | Resistance to<br>CIP, GEN, NEL,<br>TET, DOX,                  | Efflux: increased expression in adeb, abeS Porins: decreased expression in ompA, carO |





## Genetic basis for resistance – multiple mechanisms

frontiers in MICROBIOLOGY

ORIGINAL RESEARCH ARTICLE published: 01 August 2014 doi: 10.3389/fmicb.2014.00373

Comparative analysis of *Salmonella* susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network

Orla Condell<sup>12</sup>, Karen A. Power<sup>1</sup>, Kristian Händler<sup>3</sup>, Sarah Finn<sup>1</sup>, Aine Sheridan<sup>4</sup>, Kjell Sergeant<sup>5</sup>, Jenny Renaut<sup>5</sup>, Catherine M. Burgess<sup>4</sup>, Jay C. D. Hinton<sup>2,6</sup>, Jarlath E. Nally<sup>7</sup> and Séamus Fanning<sup>1,8</sup>\*

- Genotypic, transcriptomic proteomic and phenotypic of Salmonella enterica serovar Typhimurium tolerant to chlorhexidine.
- Alteration of antibiotic susceptibility with clinical significance following exposure to CHX 1 µg/mL for 30 min (mid log phase culture)
- Implication of a defence network including multiple cellular targets associated with membrane synthesis, SOS response, virulence and metabolism

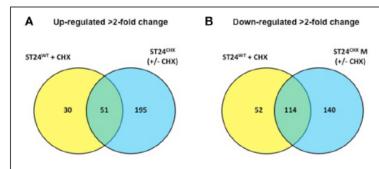



FIGURE 2 | Number and distribution of genes (A) up-regulated in the sensitive ST24<sup>WT</sup> following chlorhexidine exposure and/or the tolerant mutant ST24<sup>CHX</sup> relative to the reference strain (ST24<sup>WT</sup>) without chlorhexidine exposure. (B) Down-regulated in the sensitive ST24<sup>WT</sup> following chlorhexidine exposure and/or the tolerant mutant ST24<sup>CHX</sup>. The figure shows the differentially expressed genes relative to the reference strain (ST24<sup>WT</sup>) without chlorhexidine exposure.

ST24 $^{\text{WT}}$  CHX MIC: 1.96 µg/mL ST24 $^{\text{CHX}}$  CHX MIC: >50 µg/mL





## Carriage of efflux pump genes in healthcare setting isolates

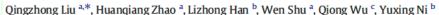
| Efflux gene<br>(% carriage in isolate)                                                       | Bacteria<br>(number of isolates)                                                                                                                 | Resistantto                                                     |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| qacA/B(83.0%)<br>smr(77.4%)<br>norA(49.0%)<br>norB(28.8%)                                    | High-level mupirocin-resistant<br>-meticillin-resistant <i>S. aureus</i><br>(MRSA) (53)                                                          | Chlorhexidine                                                   |
| qacA/B(80%)                                                                                  | Staphylococcus epidermidis (25)                                                                                                                  | Chlorhexidine                                                   |
| sepA (95.3%)<br>mepA (89.4%)<br>norA (86.4%)<br>ImrS (60.8%)<br>qacAB (40.5%)<br>smr (3.7%). | MRSA (82), methicillin –sensitive <i>S. aureus</i> (MSSA) (219)                                                                                  | Chlorhexidine                                                   |
| qacA/B(83%) smr(1.6%)                                                                        | MRSA (60)                                                                                                                                        | Benzalkonium chloride<br>Benzethonium chloride<br>Chlorhexidine |
| qacA (26% for HMRSA,<br>67% for VISA)<br>qacC (5% for HMRSA,<br>4%MSSA, 17%VISA)             | Hospital-acquired (HA)-MRSA(38),<br>25 Community-acquired (CA)-<br>MRSA (25)<br>Vancomycin insensitive <i>S. aureus</i><br>(VISA) (6); MSSA (25) | QAC<br>Chlorhexidine                                            |





## Carriage of efflux pump genes in healthcare setting isolates

Contents lists available at ScienceDirect


Diagnostic Microbiology and Infectious Disease 82 (2015) 278-283

#### Diagnostic Microbiology and Infectious Disease

journal homepage: www.elsevier.com/locate/diagmicrobio



Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant *Staphylococcus* aureus (MuH MRSA)



- Department of Clinical Laboratory, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- C Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China

#### 53 high-level mupirocin resistant MRSA

> 83% CHX MIC > 4 μg/mL

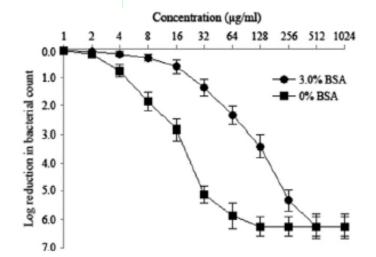



Fig. 1. The average of MBC values of chlorhexidine detected on the 53 MuH MRSA isolates. Results are presented as log10 reduction in cell counts compared with those of the control sample treated with sterile saline. The viable cell count before the exposure to chlorhexidine was 2.84 ± 0.441 × 107 CFU/mL, Black quadrangles represent "dean" condition (0% BSA); black circles, "dirty" condition (3.0% BSA). Error bars represent SDs of results from 3 experiments. The MBC was defined as the lowest concentration that produced a 5 log10 reduction following incubation at 35 °C for 48 h after being exposed to chlorhexidine for 5 min at  $20 \pm 2$  °C.

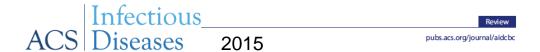


## Carriage of efflux pump genes in healthcare setting isolates

53 high-level mupirocin resistant MRSA

| Gene                | % carriage |  |
|---------------------|------------|--|
| Plasmid-mediated    |            |  |
| qacA/B              | 83         |  |
| smr                 | 77         |  |
| qacH                | 13         |  |
| Chromosome-mediated |            |  |
| norA                | 96         |  |
| norB                | 98         |  |
| norC                | 93         |  |
| sepA                | 96         |  |
| sdrM                | 91         |  |
| терА                | 91         |  |
| mdeA                | 94         |  |
|                     |            |  |

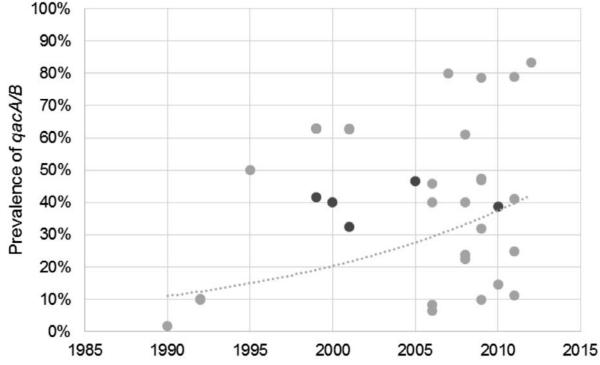
| Mutliple gene carriage                              | %  |
|-----------------------------------------------------|----|
| qacA/B + smr                                        | 53 |
| qacA/B + smr + qacH                                 | 11 |
| norA + norB + norC + sep A +<br>sdrM + mep A + mdeA | 76 |


| Overexpression                             |    |
|--------------------------------------------|----|
| At least 1 Chromosome-mediated efflux gene |    |
| norA                                       | 49 |
| NorB                                       | 29 |
| norC                                       | 10 |
| терА                                       |    |
| mdeA                                       |    |
| sepA                                       |    |
| sdrM                                       | 4  |








## Carriage of efflux pump genes in healthcare setting isolates



## Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance

Megan C. Jennings, \*\* Kevin P. C. Minbiole, \*\* and William M. Wuest\*\*, \*\*

<sup>&</sup>lt;sup>‡</sup>Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States



Reported prevalence of QAC resistance genes in MRSA isolates



<sup>&</sup>lt;sup>†</sup>Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States





## CHX concentrations and applications

| Microorganisms         | MIC mg/L    |
|------------------------|-------------|
| Bacillus spp           | 1 - 3       |
| Clostridium spp        | 1.8 - 70    |
| Corynebacterium spp    | 5 - 10      |
| Staphylococcus spp     | 0.5 - 6     |
| Streptococcus faecalis | 2000 - 5000 |
| Streptococcus spp      | 0.1-7       |

| Microorganisms          | MIC mg/L  |
|-------------------------|-----------|
| <i>Aspergillu</i> s spp | 75 - 500  |
| Candida albicans        | 7 - 15    |
| <i>Microsporum</i> spp  | 12 - 18   |
| <i>Penicillium</i> spp  | 150 - 200 |
| Saccharomyces spp       | 50 - 125  |
| <i>Trichophyton</i> spp | 2.5 - 14  |

| Microorganisms        | MIC mg/L   |
|-----------------------|------------|
| Escherichia coli      | 2.5 - 7.5  |
| <i>Klebsiella</i> spp | 1.5 - 12.5 |
| Proteus spp           | 3 - 100    |
| Pseudomonas spp       | 3 - 60     |
| Serratia marcescens   | 3 - 75     |
| Salmonella spp        | 1.6 - 5    |



## CHX concentrations and applications

| Microorganisms         | MIC mg/L    |
|------------------------|-------------|
| Bacillus spp           | 1 - 3       |
| Clostridium spp        | 1.8 - 70    |
| Corynebacterium spp    | 5 - 10      |
| Staphylococcus spp     | 0.5 - 6     |
| Streptococcus faecalis | 2000 - 5000 |
| Streptococcus spp      | 0.1-7       |

| Microorganisms          | MIC mg/L  |
|-------------------------|-----------|
| Aspergillus spp         | 75 - 500  |
| Candida albicans        | 7 - 15    |
| <i>Microsporum</i> spp  | 12 - 18   |
| <i>Penicillium</i> spp  | 150 - 200 |
| Saccharomyces spp       | 50 - 125  |
| <i>Trichophyton</i> spp | 2.5 - 14  |

| Microorganisms        | MIC mg/L   |
|-----------------------|------------|
| Escherichia coli      | 2.5 - 7.5  |
| <i>Klebsiella</i> spp | 1.5 - 12.5 |
| Proteus spp           | 3 - 100    |
| Pseudomonas spp       | 3 - 60     |
| Serratia marcescens   | 3 - 75     |
| Salmonella spp<br>45  | 1.6 - 5    |

| Applications      | Concentration (mg/L) |
|-------------------|----------------------|
| Eye drop          | 20 - 60              |
| Skin disinfection | 5,000                |
| Surgical scrub    | 20,000 - 40,000      |
| Irrigation        | 150 -500             |
| Topical cream     | 1,000                |
| Wash cloth        | 2,000                |



## REA

## **REALITY CHECK**

## Factors affecting CHX efficacy



#### **Factors inherent to the product**

- concentration
- formulation
- water activity
- pH

**CONCENTRATION EXPONENT = 2** 

**PRECIPITATION** 



## Factors affecting CHX efficacy

#### Factors inherent to the product

- concentration
- formulation
- water activity
- pH

#### **INCOMPATIBILITIES**

- Anionic and non-ionic surfactants
- Viscous materials such as acacia, sodium alginate, sodium carboxymethylcellulose, starch, and tragacanth
- Brilliant green, chloramphenicol, copper sulfate, fluorescein sodium, formaldehyde, silver nitrate, and zinc sulfate.
- Cork (container)

#### **PRECIPITATION**

In the presence of inorganic acids, certain organic acids, and salts, hard water

Solubility increases with cetrimide

## Factors affecting CHX efficacy

#### **Factors inherent to the product**

- concentration
- formulation
- water activity
- pH

#### Factors inherent to the application

- surface
- organic load (soiling)
- temperature
- contact time
- humidity



## Factors affecting CHX efficacy

#### **Factors inherent to the product**

- concentration
- formulation
- water activity
- pH

#### Factors inherent to the application

- surface
- organic load (soiling)
- temperature
- contact time
- humidity

#### Factors inherent to the use of the product

- Actual exposition time
- Residual concentration
- Frequency of applications
- Dilution during application
- Formulation delivery



## Factors affecting CHX efficacy

#### **Factors inherent to the product**

- concentration
- formulation
- water activity
- pH

#### Factors inherent to the application

- surface
- organic load (soiling)
- temperature
- contact time
- humidity

#### Factors inherent to the use of the product

- Actual exposition time
- Residual concentration
- Frequency of applications
- Dilution during application
- Formulation delivery



## Predicting resistance and cross-resistance



American Journal of Infection Control

journal homepage: www.ajicjournal.org



Major article

Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage

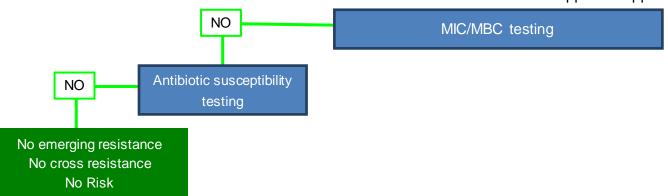


Rebecca Wesgate BSc a, Pierre Grasha PhD b, Jean-Yves Maillard BSc, PhD a.\*

<sup>2</sup> Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK <sup>b</sup> Deb Group, Denby, UK

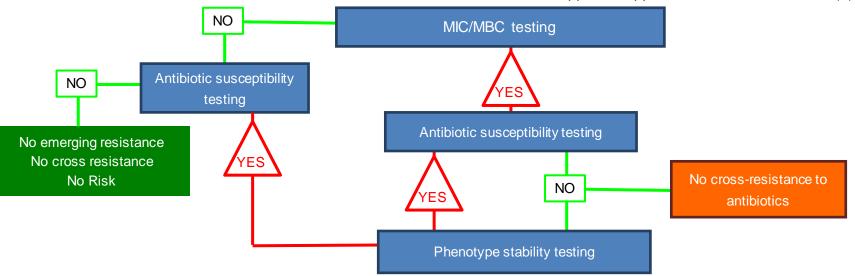
> MICROBIAL DRUG RESISTANCE Volume 00, Number 0, 2013 © Mary Ann Liebert, Inc. DOI: 10.1089/mdr.2013.0039

> > Does Microbicide Use in Consumer Products Promote Antimicrobial Resistance? A Critical Review and Recommendations for a Cohesive Approach to Risk Assessment


Jean-Yves Maillard, Sally Bloomfield, Joana Rosado Coelho, Phillip Collier, Barry Cookson, Séamus Fanning, Andrew Hill, Phillippe Hartemann, Andrew J. Mcbain, Marco Oggioni, Marco Oggioni, Syed Sattar, Herbert P. Schweizer, and John Threlfall.

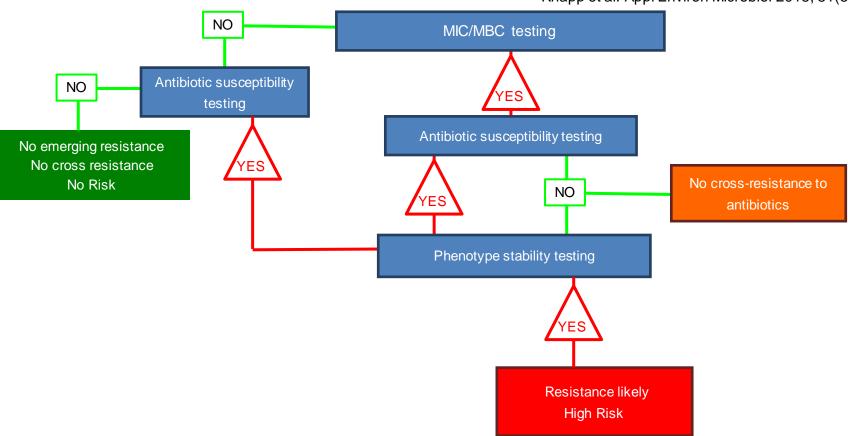


**MECHANISMS** 


#### CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

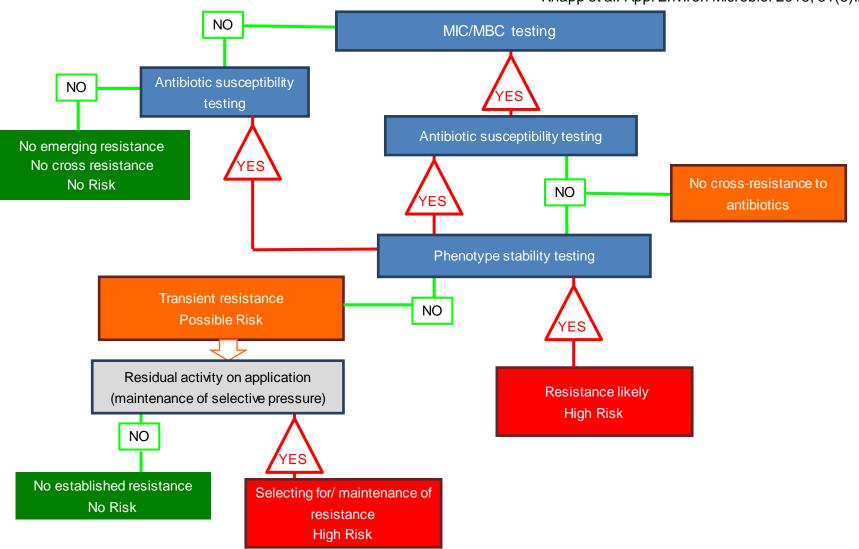
## Predicting resistance and cross-resistance





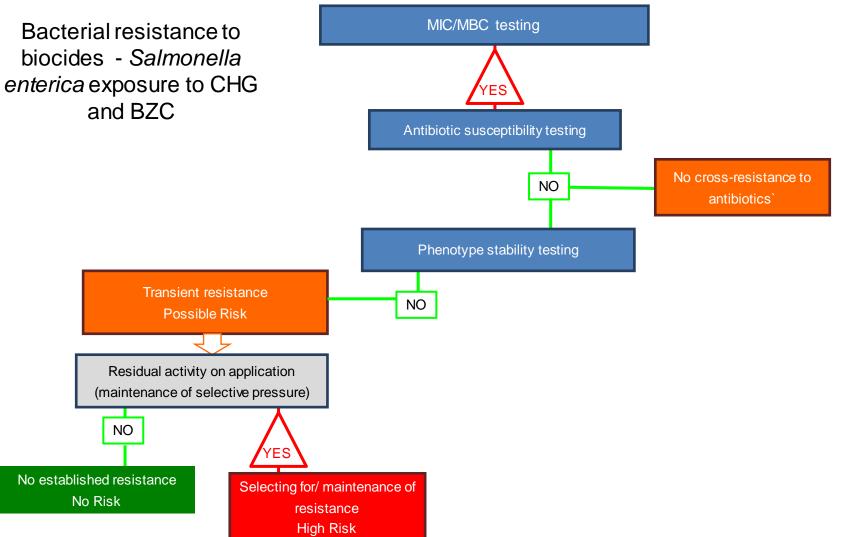

## Predicting resistance and cross-resistance




#### CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

## Predicting resistance and cross-resistance

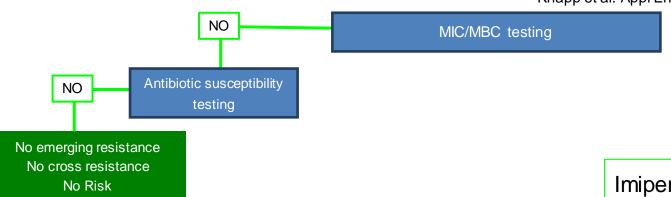





## Predicting resistance and cross-resistance



#### CARDIFF UNIVERSITY PRIFYSGOL CAERDYD


## Predicting resistance and cross-resistance





#### Predicting resistance and cross-resistance

Knapp et al. Appl Environ Microbiol 2015; 81(8):2652-9.

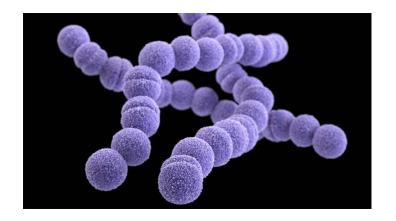


Bacterial resistance to biocides

Ps. aeruginosa exposure to a mouthwash
0.0000125% chlorhexidine (1/40 in use dilution)

Ps. aeruginosa exposure to a shampoo 0.000015% benzalkonium chloride (1/100 in use dilution)

Imipenem (10 µg)


Ceftazidime (30 µg)

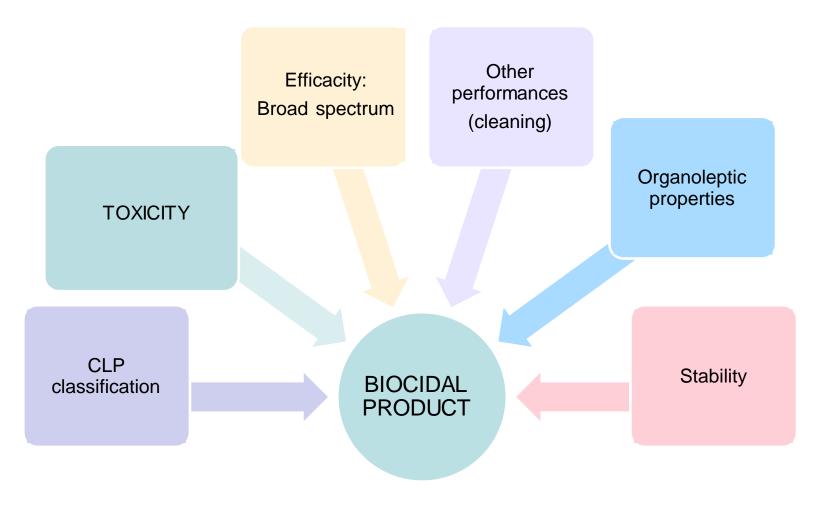
Meropenem (15 µg)

Tobramycin (10 µg)

Aztreonam (30 µg)

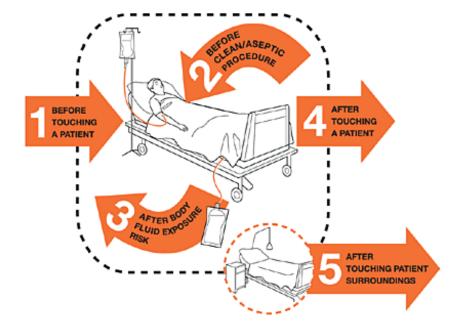







The obvious?

# A DEAD BUG CANNOT BECOME RESISTANT




## The obvious? Complex formulations





The obvious?



VS.

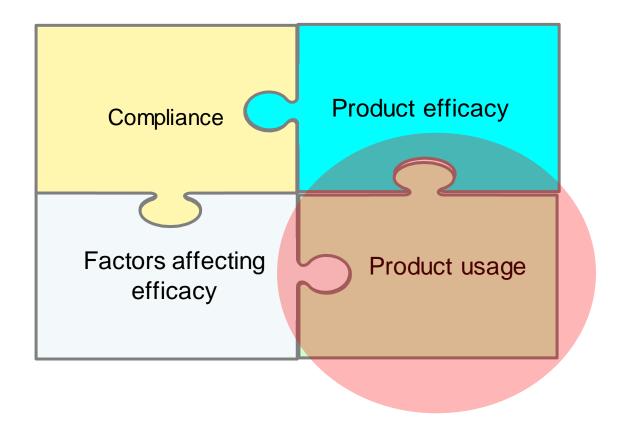
# OVERUSE

40%

Median hand hygiene compliance from 95 studies.

Erasmus et al. Infect Control Hosp Epidemiol 2010;31:283-94.






## The obvious – product usage

Improving practices (product usage) and product efficacy are essential for a better control

Otter et al. ICHE 2011;32:687-99

Rutala & Weber. *J Hosp Infect* 2001;48:S64-8. Boyce. *J Hops Infect* 2007;65:50-4.





## **THANK YOU**









# www.webbertraining.com/schedulep1.php

INFECTION CONTROL CHAMPIONS ARE MADE, NOT BORN

Speaker: Prof. Karen Vickery, Macquarie University, Australia

Speaker: Prof. Ruth Carrico, University of Louisville

Sponsored by GOJO (www.gojo.com)

Ayliffe Lecture ... THE IMPACT OF DISINFECTANTS ON ANTIMICROBIAL

BIOFILMS IN THE HOSPITAL ENVIRONMENT - INFECTION CONTROL

INFECTION PREVENTION CORE PRACTICES: RESETTING THE BAR FOR

Speaker: Prof. Shaheen Mehtar, Stellenbosch University, Cape Town, South Africa

|                    | (FREE European Teleclass - Broadcast live from the 2018 IPS conference) |
|--------------------|-------------------------------------------------------------------------|
| September 30, 2018 | Cottrell Lecture SURVEILLANCE BY OBJECTIVES: USING MEASUREMENT          |
|                    | IN THE PREVENTION OF HEALTHCARE ASSOCIATED INFECTIONS                   |
|                    | Cocalear Brof. Janua Wilson Haircraite of West London                   |

Speaker: Prof. Jennie Wilson, University of West London

(FREE European Teleclass - Broadcast live from the 2018 IPS conference)

(FREE CBIC Teleclass)

Speaker: To be announced

(South Pacific Teleclass)

SAFE PATIENT CARE

IMPLICATIONS

RESISTANCE - AN AYLIFFE PREDICTION

October 2, 2018

October 11, 2018

October 17, 2018

October 18, 2018

## Thanks to Teleclass Education

## PATRON SPONSORS







