MERS-COV Implications for healthcare facilities

Sotirios Tsiodras, MD, MSc, PhD

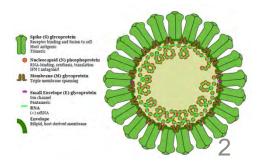
Associate Professor of Medicine & Infectious Diseases Medical School, National & Kapodistrian University of Athens

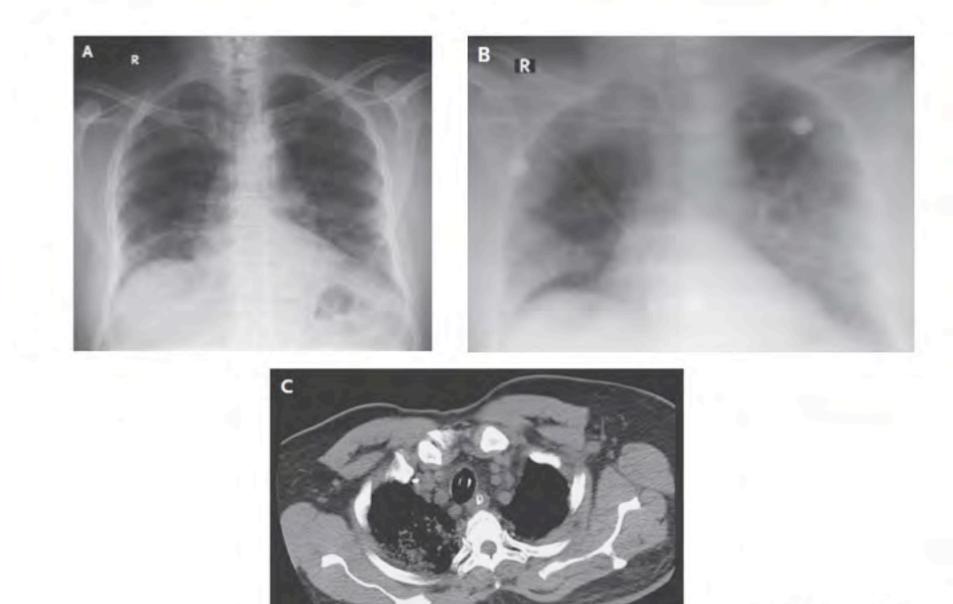
Hosted by Paul Webber

paul@webbertraining.com

www.webbertraining.com

March 3, 2016

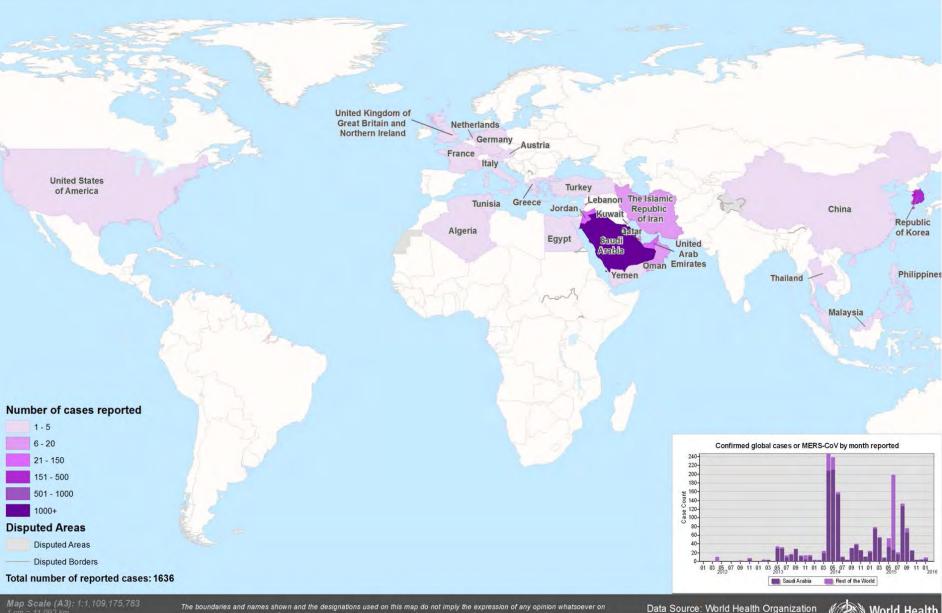

New Coronavirus - MERS-CoV


The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

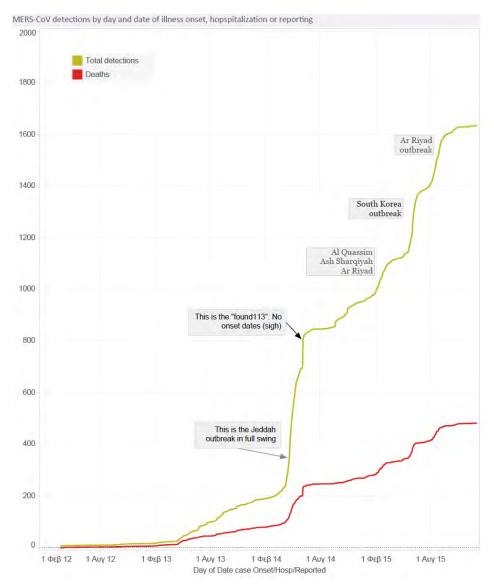
Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia

Ali Moh Zaki, M.D., Ph.D., Sander van Boheemen, M.Sc., Theo M. Bestebroer, B.Sc., Albert D.M.E. Osterhaus, D.V.M., Ph.D., and Ron A.M. Fouchier, Ph.D.



N ENGL J MED 367;19

MERS-CoV EPIDEMIOLOGY


CONFIRMED GLOBAL CASES OF MERS-COV 2012 - 2016

1 cm = 11,092 km Coordinate System: GCS WGS 1984 Datum: WGS 1984 Units: Devote The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data Source: World Health Organization © WHO 2014. All rights reserved. Map date:12/02/2016

MERS 2012-2016, Epicurve

Middle East respiratory syndrome coronavirus (MERS-CoV)

Thailand confirms MERS CoV in traveler, WHO cautions against continued risk of importation

January 2016 -- Thailand today confirmed Middle East respiratory syndrome coronavirus (MERS) CoV) disease in a traveler, the second such case in the country in the last 7 months, as WHO cautioned other member states in its South-East Asia Region against the continuing risks and the need to remain vigilant.

Read the press release 2

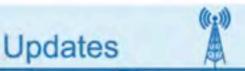
Case fatality 35.8 %

1,638

WHO has been notified of 1,638 laboratory-confirmed cases of infection with MERS-CoV (globally).

For more: Latest disease outbreak news

587

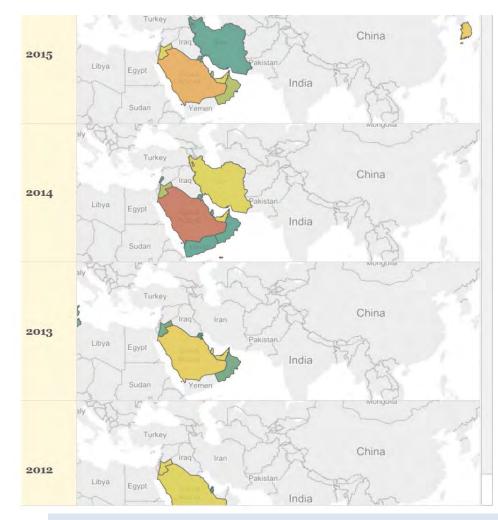

WHO has been notified of 587 deaths related to MERS-CoV since September 2012.

WHO news and

26

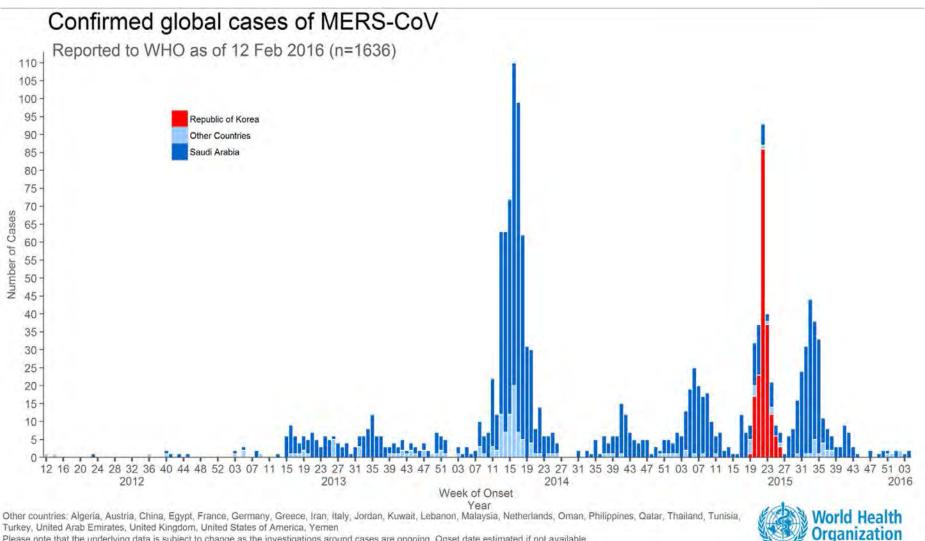
Since September 2012, 26 countries have reported cases of MERS-CoV.

WHO SEARD/Vienità Flugta Smith



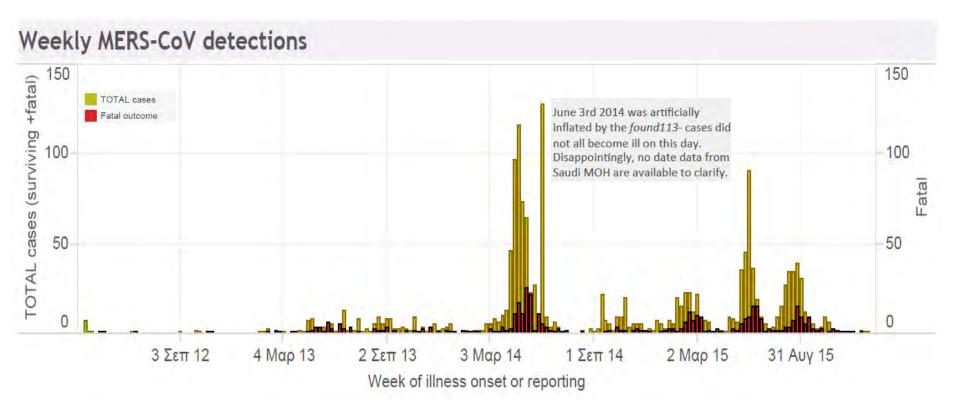
For more: Coronavirus infections news

Feature stories



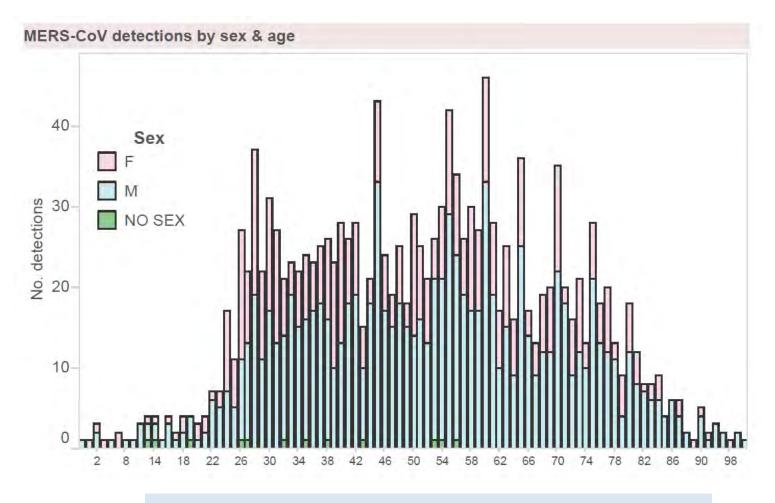
MERS-CoV cases by region of likely acquisition

Ian Mackay, www.virologydownunder.blogspot.com.au

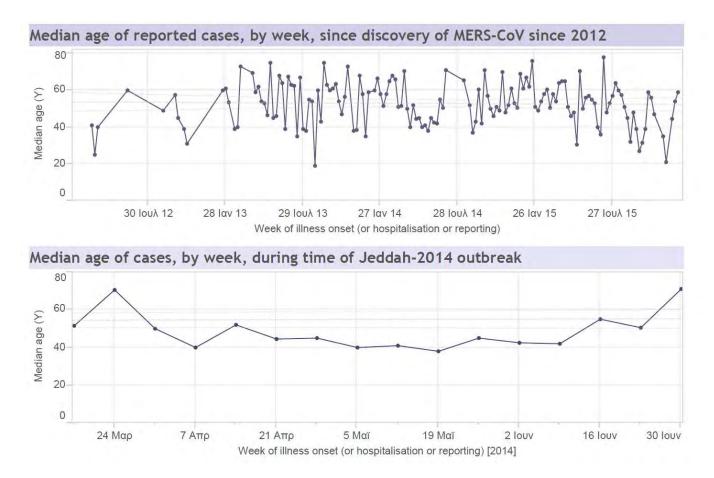

MERS 2012-2016, Epicurve

9

Please note that the underlying data is subject to change as the investigations around cases are ongoing. Onset date estimated if not available


MERS – Global epi curve n /week

Ian Mackay, www.virologydownunder.blogspot.com.au

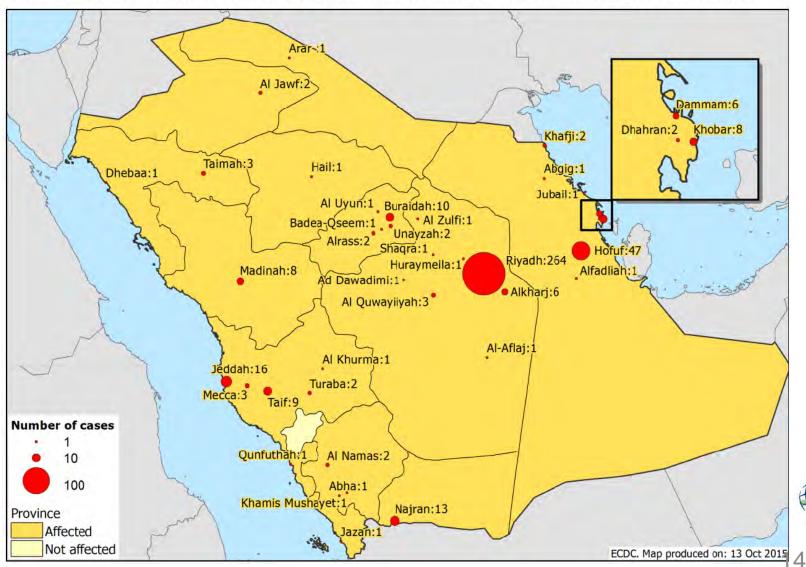

10

MERS – Global epi curve detections by age & gender

Ian Mackay, www.virologydownunder.blogspot.com.au

MERS – Global epi curve median age /week

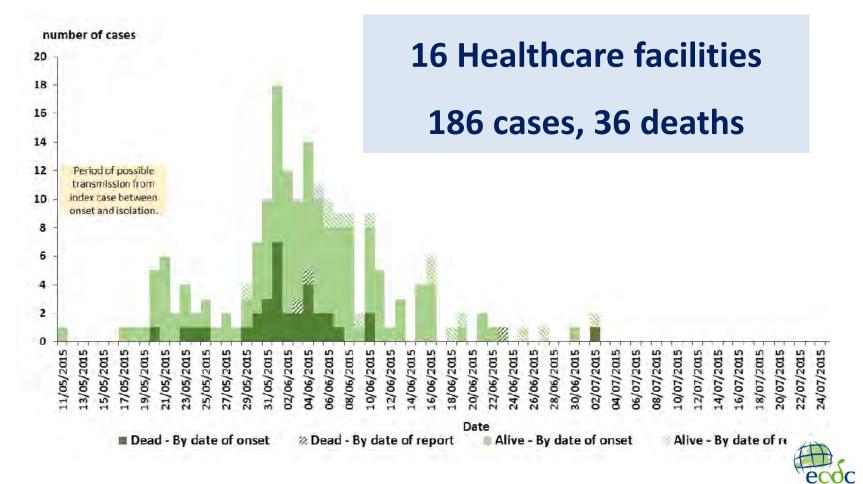
Ian Mackay, www.virologydownunder.blogspot.com.au


MERS by country of reporting Middle East: Mar 2012 - Oct 2015

Region	Country	Number of cases	Number of deaths
Middle East	Saudi Arabia	1 255	539
	United Arab Emirates	81	11
	Jordan	35*	14
	Qatar	13	5
	Oman	6	3
	Iran	6	2
	Kuwait	4	2
	Egypt	1	0
	Lebanon	1	0
	Yemen	1	1

77 % of cases from S Arabia

MERS – KSA 2015


Figure 4. Distribution of MERS cases by reporting city, Saudi Arabia, 1 January – 13 October 2015

MERS – KSA 2015 Confirmed MERS by source of infection

MERS-CoV, Korea & China May - July 2015

MERS-CoV, Korea & China 2015

Ian Mackay, www.virologydownunder.blogspot.com.au

MERS-CoV, Comorbidities

Comorbidities Number of times a comorbidity was described in a MERS-CoV positive human, by WEEK TOTAL MERS-CoV detections (b. 120 g MERS-CoV detection Cases described as having a Comorbidities 100 100 80 60 50 40 20 0 0 Maï-13 Ιουλ-13 Αυγ-13 Σεπ-13 Φεβ-15 Map-15 Атр-15 Maï-15 louv-15 louA-15 Auv-15 OKT-15 Атр-12 Maii-12 louA-12 Auy-12 lav-13 Map-13 Атр-13 louv-13 Noc-13 ∆£К-13 N0E-14 Δεκ-14 Σεπ-12 OKT-12 ∆€К-12 Атр-14 Ioυλ-14 Αυγ-14 Σεπ-14 OKT-14 lav-14 Φεβ-14 Map-14 louv-14 Noe-12 1-30N Δεκ-1

Week of illness onset (or hospitalization or reporting if onset not published)

Ian Mackay, www.virologydownunder.blogspot.com.au

MERS - Philippines 2015

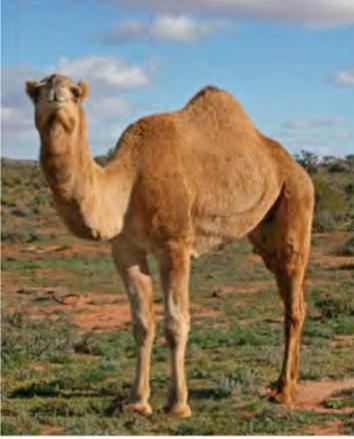
- 13 Feb 2015 \rightarrow WHO notified
- 31 yr female HCW in Ryadh, S Arabia
- Onset on 26 Jan 2015 while working in hospital
- Feb 1st 2015 travel to Philippines w family member
- Feb 2nd 2015 admission to local hospital
- Isolated in special hospital February 10th 2015
- All contacts (-) to date

Quick, Easy Compare TOP Providers Expatriate Health Insurance Quotes

Eleven people linked to Philippines MERS case show symptoms: WHO

BY TOM MILES

GENEVA | Fri Feb 13, 2015 8:16am EST



(Reuters) - Eleven people who had contact with the Philip Middle East Respiratory Syndrome coronavirus (MERS-C the World Health Organisation said on Friday.

Bats & ... dromedary camels!!!

EMERGING INFECTIOUS DISEASES[®]

EID Journal

October 2013

Subscribe

About the Journal

Ahead of Print / In Press

Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia

Figure 1

Figure 2

Table 1

Table 2

Author Resource Center

Medscape CME

More Content

Social Media

EID Journal > Ahead of Print / In Press

> Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia

🖪 Recommend 🔰 Tweet 1 🛃 Share

Volume 19, Number 11-November 2013

Dispatch

Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia

Ziad A. Memish, Nischay Mishra, Kevin J. Olival, Shamsudeen F. Fagbo, Vishal Kapoor, Jonathan H. Epstein, Rafat AlHakeem, Abdulkareem Durosinloun, Mushabab Al Asmari, Ariful Islam, Amit Kapoor, Thomas Briese, Peter Daszak, Abdullah A. Al Rabeeah, and W. Ian Lipkin

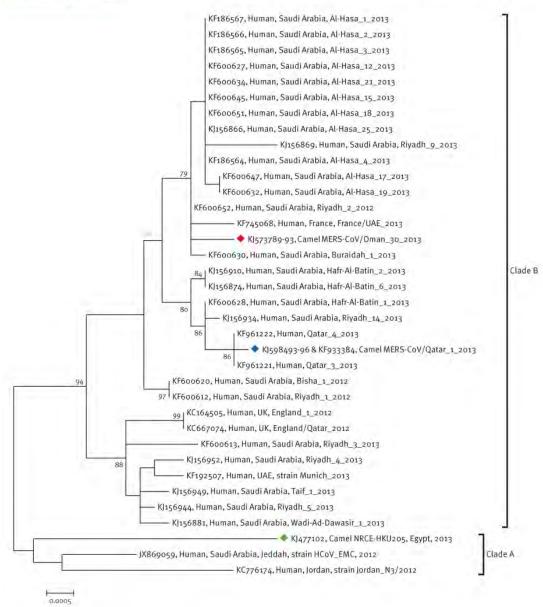
Author affiliations: Ministry of Health, Riyadh, Saudi Arabia (Z.A. Memish, S.F. Fagbo, R. AlHakeem, A. Durosinloun, A.A. Al Rabeeah); Columbia University, New York, New York, USA (N. Mishra, V. Kapoor, A. Kapoor, T. Briese, W.I. Lipkin); EcoHealth Alliance, New York (K.J. Olival, J.H. Epstein, P. Daszak); Ministry of Health, Bisha, Saudi Arabia (M. Al Asmari); EcoHealth Alliance, Dhaka, Bangladesh (A. Islam)

Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013

N Nowotny (Norbert.Nowotny@vetmeduni.ac.at)1,2, J Kolodziejek1

- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman

Citation style for this article:


Nowotny N, Kolodziejek J. Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. Euro Surveill. 2014;19(16):pil=20781. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20781

Article submitted on 17 April 2014 / published on 24 April 2014

- Teams for KSA-USA
- isolated MERS-CoV from nasal swabs of dromedary camels in Saudi Arabia
- whole-genome sequences of humans and camels are indistinguishable.
- camels simultaneously infected w >1 MERS-CoV

UAE: United Arab Emirates; UK: United Kingdom.

Each 3,754 nucleolide long sequence used to generate the tree was obtained from concatenating partial sequences of the open reading frame (ORF)1a, spike and ORF4b gene regions. Of note the different clustering of the camel-derived sequences originating from Oman (marked with a red diamond). Quatar (blue diamond) and Egypt (green diamond). The Qatari and Omani camel-derived MERS-CoV sequences cluster close to the human-derived sequences originating from the same areas.

Nasal swab specimen from camel in Egypt. Full genome sequence - viruses genetically Severy similar to human MERS-Cov EMERGING **INFECTIOUS DISEASES**

EID journal

CDC Home

March 2014

Subscribe

About the Journal

Ahead of Print / In Press

A-Z Index for All CDC Top

MERS Coronaviruses in **Dromedary Camels**, Egypt

Author Resource Center

Medscape CME

More Content

Social Media

Announcement Calendar

Contact Us

Related Articles

Bird Migration Routes

EID journal > Ahead of Print / In Press

Recommend 6 Tweet 28 Share

Volume 20, Number 6-June 2014

Dispatch

MERS Coronaviruses in Dromedary Camels, Egypt

Daniel K.W. Chul, Leo L.M. Poon¹, Mokhtar M. Gomaa, Mahmoud M. Shehata, Ranawaka A.P.M. Perera, Dina Abu Zeid, Amira S. El Rifay, Lewis Y. Siu, Yi Guan, Richard J. Webby, Mohamed A. Ali, Malik Peiris 🖾 , and Ghazi Kayali M

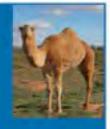
Author affiliations: The University of Hong Kong, Hong Kong, China (D.K.W. Chu, L.L.M. Poon, R.A.P.M. Perera, Y. Guan, M. Peiris); National Research Centre, Giza, Egypt (M.M. Gomaa, M.M. Shehata, D.A. Zeid, A.S. El Rifay, M.A. Ali); HKU-Pasteur Research Pole, Hong Kong (L.Y. Siu); St. Jude Children's Research Hospital, Memphis, Tennessee, USA (R.), Webby, G. Kavali)

Suggested citation for this article

Article Contents

- The Study
- Conclusions
- Acknowledgment
- References
- * Figure 1
- Figure 2
- Tabla 4

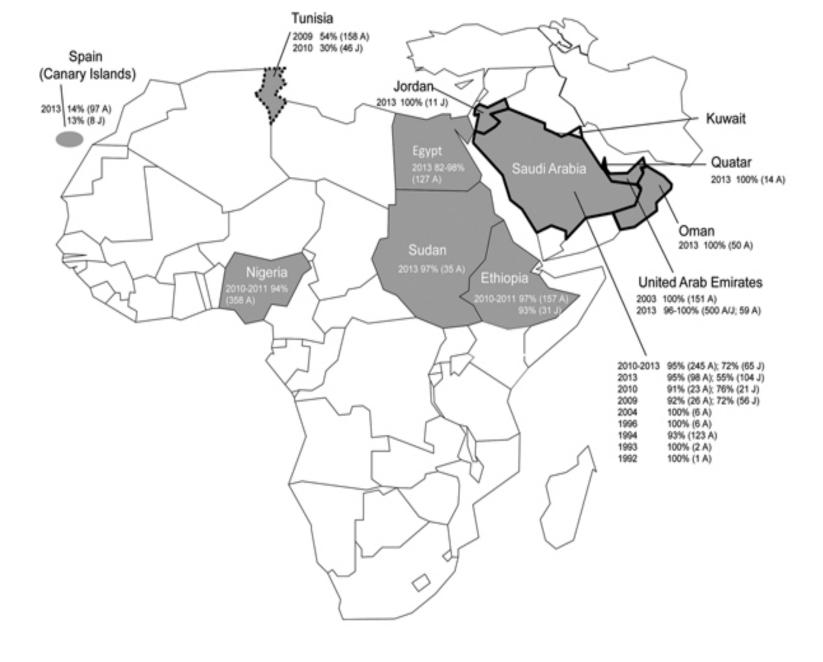
100

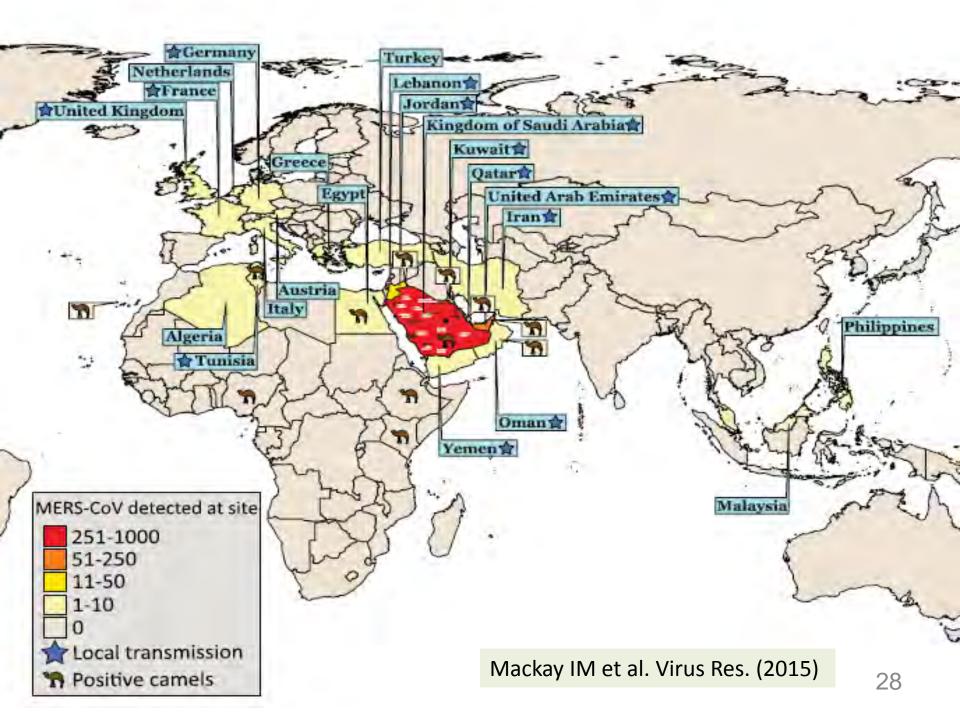

- RSS Feeds
- Get syndicated content
- O Podcasts
- EID Widgets
- EID eCards
- Subscribe
- · Cover Art on Flickr
- CDC on Facebook
- EID on Twitter

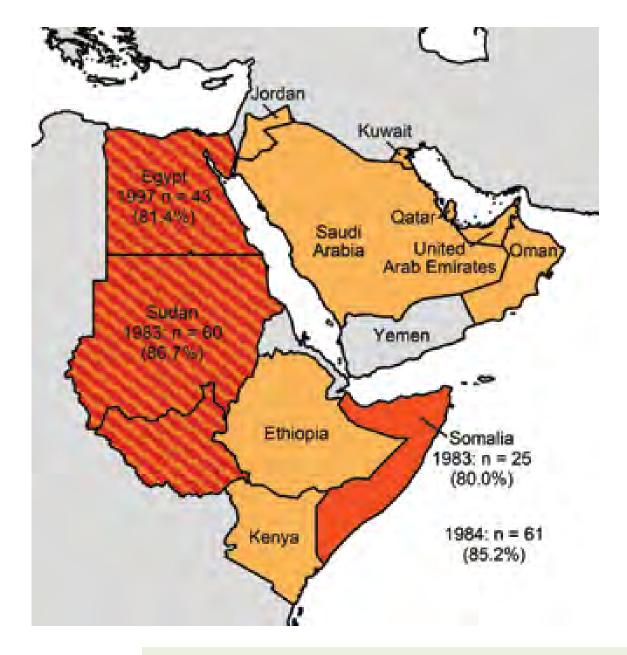
Contact Us

- Past Issues
- Select a Past Issue:

RESEARCH ARTICLES

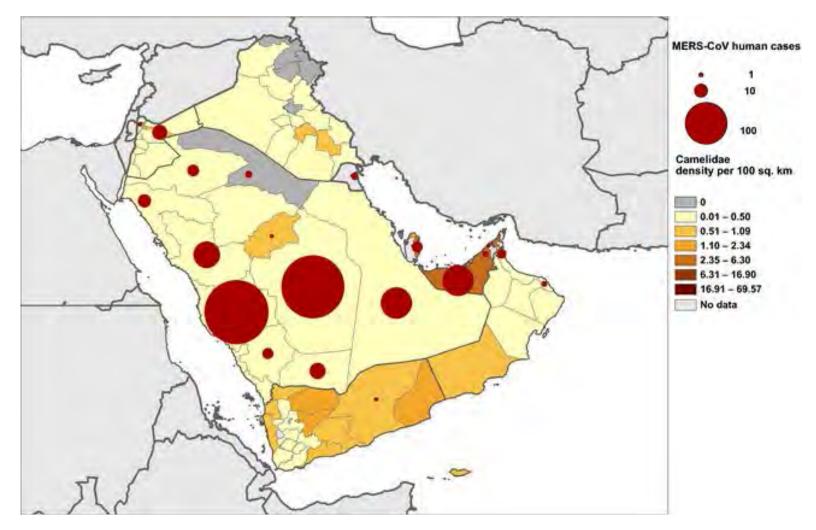

Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013




r Sentember 2013

A Pererata, P Wanga, M R Gomaas, R El-Sheshenys, A Kandeils, O Bagatos, L Y Sius, M M Shehatas, A S Kayeds, Y Moatasims, I. L Poon', Y Guan', R J Webby', M A Ali's, J S Peiris (malik@hku.hk)', G Kayali (ghazi.kayali@stjude.org)*

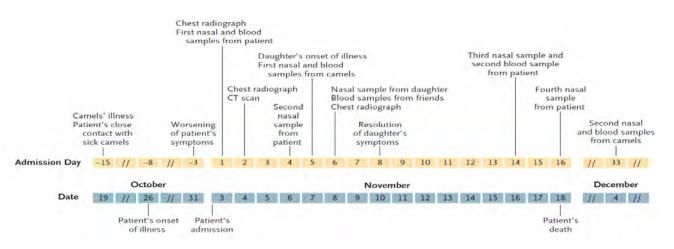
		MERS-CoV micro-neutralisation titre ≥1:20		MERS-CoV spike pseudotype antibody titre 21:	
sera	di	Total tested	% Positive (n)	Total tested	% Positive (n)
luman ^a	Egypt Hong Kong		0 (0/815)	100	0 (0/100)
ioat ^b		h	0 (0/13)	ND	ND
iheep ^o		"Ca	o (o/5)	ND	ND
Vater buffalo ^b		-4m	11	ND	ND
lowo		25	C/C	ND	ND
Camel®		110	10+	110	98.2 (108/110)
			30.	04.	
luman		528	o (o/528)	UCh.	o (o/115)
Swine	Hong Kong	260	0 (0/260)	l'er	ND
Wild bird		204	0 (0/204)	6	ht



Muller et al Emerg Infect Dis. 2014 Dec;20(12):2093-5.

Human–Dromedary Camel Interactions and the Risk of Acquiring Zoonotic MERS-CoV Infection

The NEW ENGLAND JOURNAL of MEDICINE


BRIEF REPORT

Evidence for Camel-to-Human Transmission of MERS Coronavirus

Esam I. Azhar, Ph.D., Sherif A. El-Kafrawy, Ph.D., Suha A. Farraj, M.Sc., Ahmed M. Hassan, M.Sc., Muneera S. Al-Saeed, B.Sc., Anwar M. Hashem, Ph.D., and Tariq A. Madani, M.D.

SUMMARY

We describe the isolation and sequencing of Middle East respiratory syndrome coronavirus (MERS-CoV) obtained from a dromedary camel and from a patient who died of laboratory-confirmed MERS-CoV infection after close contact with camels that had rhinorrhea. Nasal swabs collected from the patient and from one of his

Centers for Disease Control and Prevention CDC 24/7: Saving Lives. Protecting People.™

A-Z Index for All CDC Topics

EMERGING **INFECTIOUS DISEASES***

EID journal

March 2014

Subscribe

About the Journal

Ahead of Print / In Press

Antibodies against **MERS** Coronavirus in Dromedary Camels, **United Arab Emirates**, 2003 and 2013

Author Resource Center

Medscape CME

More Content

Social Media

Announcement Calenda

Contact Us

	EID journal > Ahead of Print / In Press	
	Volume 20, Number 4-April 2014	
5		
	Research	
	Antibodies against MERS Coronavirus in	Dromedary Camels
	Antibodies against MENS coronavirus in	bioincuary camets,
	11 to 1 to 1 F to 2000 10010	
	United Arab Emirates, 2003 and 2013	
	Benjamin Meyer, Marcel A. Müller, Victor M. Corman, Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godeke, Erik Lattwein, Stephan Kallies, Artem Siemens, Janko van Beek,	Article Contents
	Benjamin Meyer, Marcel A. Müller, Victor M. Corman, Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godeke, Erik Lattwein, Stephan Kallies, Artem Siemens, Janko van Beek, Jan F. Drexler, Doreen Muth, Berend-Jan Bosch, Ulrich Wernery, Marion P.G. Koopmans, Renate Wernery, and	Article Contents • Methods
	Benjamin Meyer, Marcel A. Müller, Victor M. Corman, Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godeke, Erik Lattwein, Stephan Kallies, Artem Siemens, Janko van Beek, Jan F. Drexler, Doreen Muth, Berend-Jan Bosch, Ulrich Wernery, Marion P.G. Koopmans, Renate Wernery, and Christian Drosten ⊠	
	Benjamin Meyer, Marcel A. Müller, Victor M. Corman, Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godeke, Erik Lattwein, Stephan Kallies, Artem Siemens, Janko van Beek, Jan F. Drexler, Doreen Muth, Berend-Jan Bosch, Ulrich Wernery, Marion P.G. Koopmans, Renate Wernery, and Christian Drosten ⊠ Author affiliations: University of Bonn Medical Centre, Bonn,	* Methods
	Benjamin Meyer, Marcel A. Müller, Victor M. Corman, Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godeke, Erik Lattwein, Stephan Kallies, Artem Siemens, Janko van Beek, Jan F. Drexler, Doreen Muth, Berend-Jan Bosch, Ulrich Wernery, Marion P.G. Koopmans, Renate Wernery, and Christian Drosten ⊠	Methods Results

Emerging Infectious Disease Journal All CDC Topics SEARCH Chinese a Copic abrive

ISSN: 1080-6059

nail page link nt page S Feeds st syndicated content dcasts D Widgets D eCards

bscribe

ver Art on Flickr

C on Facebook

D on Twitter

ct Us

Issues

Select a Past Issue:

EID journal

March 2014

Subscribe

About the Journal

Centers for Disease Control and Prevention CDC 24/7: Saving Lives. Protecting People.™

EID journal > Ahead of Print / In Press

Volume 20, Number 4-April 2014

Tweet 13

United Arab Emirates, 2003 and 2013

Recommend 38

A-Z Index for All CDC Topics

EMERGING INFECTIOUS DISEASES®

ISSN: 1080-6059

SEARCH

Email page link Print page RSS Feeds Get syndicated content Podcasts EID Widgets EID eCards Subscribe

Emerging Infectious Disease Journal

All CDC Topics

chinise a tonic abrive

Antibodies against MERS Coronavirus in Dromedary Camels, United Arab Emirates,

Author Resource Center

Ahead of Print / In Press

Medscape CME

2003 and 2013

More Content

Social Media

Chantal B.E.M. Reusken, Daniel Ritz, Gert-Jan Godele
 Jan F. Drexler, Dorean to Werner
 MERS-COV Antibodies in camels
 MERS-COV Antibodies (+)
 UAE, 2003-2013, 97.1% (+)
 UAE, 2003-2013, 97.1% (+)
 No easy Tx from animals to humans

Share

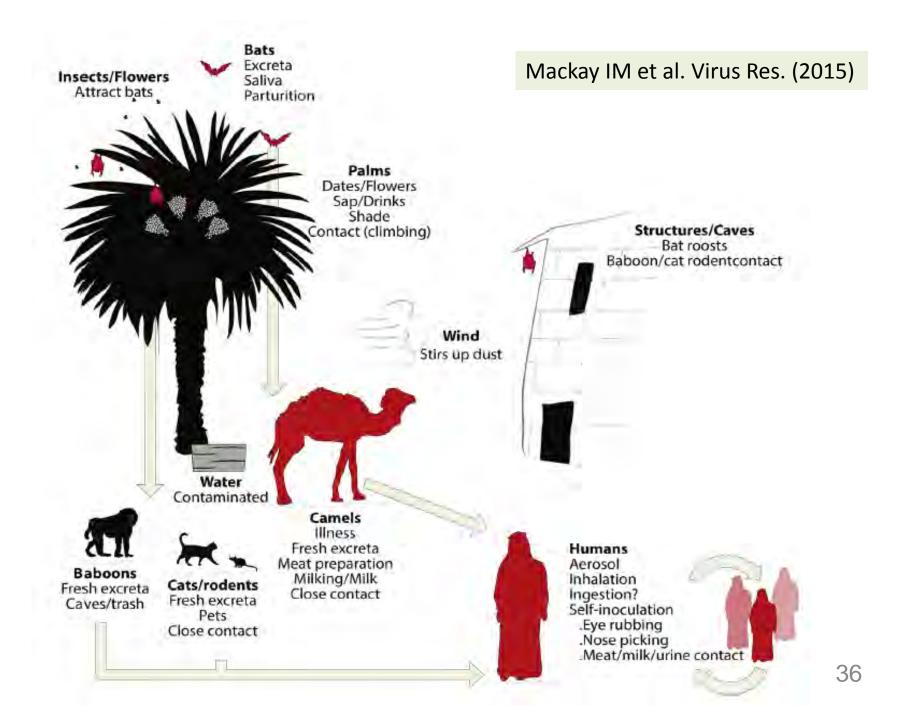
EMERGING INFECTIOUS DISEASES[®]

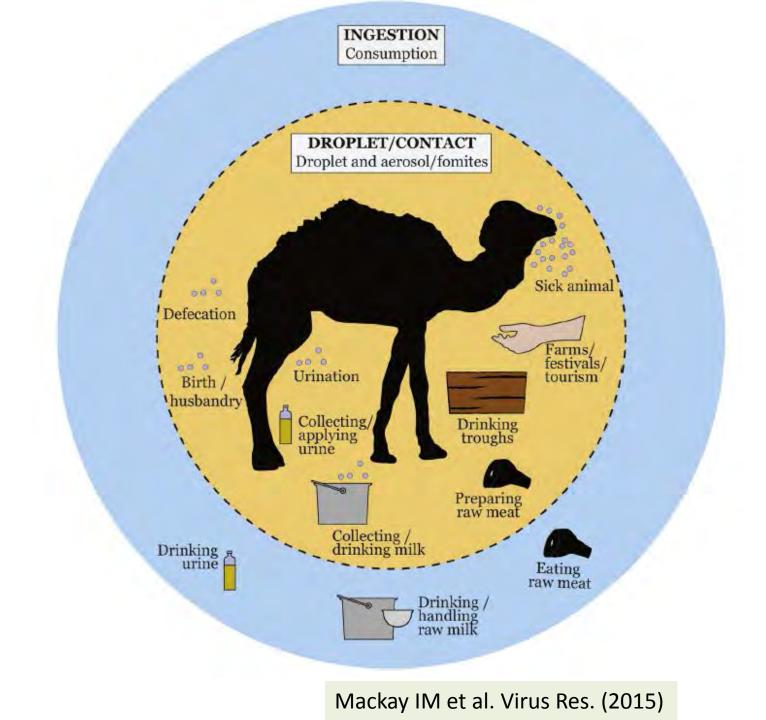
Recommend Street Share

Volume 21, Number 4-April 2015

Dispatch

Lack of Middle East Respiratory Syndrome Coronavirus Transmission from Infected Camels


Maged G. Hemida ¹ , Abdulmohsen Al-Naeem ¹ , Ranawaka A.P.M. Perera ¹ , Alex W.H. Chin, Leo L.M. Poon, and	On This Page
Malik Peiris	
Author affiliations: Kafrelsheikh University, Egypt (M.G. Hemida); King Faisal University, Hofuf, Saudi Arabia	The Study
(M.G. Hemida, A. Al-Naeem); The University of Hong Kong, Hong Kong, China (R.A.P.M. Perera, A.W.H. Chin,	mestudy
L.L.M. Poon, M. Peiris)	Conclusions
Suggested citation for this article	


MERS-CoV, Contact w animals

Animals When animals (includes camels, sheep, goats & undefined) were reported in association (not necessarily contact) with a human case, by WEEK 20 TOTAL MERS-CoV detections. 20 Camel contact/proximity menti. MERS-CoV detection 15 15 Camels 10 10 5 5 0 Maï-15 10UV-15 10UA-15 AUY-15 Атр-12 Maï-12 louh-12 Auy-12 Σεт-12 OKT-12 Noe-12 **ΔEK-12** lav-13 Map-13 Апр-13 Maï-13 louv-13 louh-13 Auγ-13 Σεπ-13 Noe-13 ∆£К-13 Атр-14 louv-14 louλ-14 Auy-14 Σεтт-14 Noε-14 Δεκ-14 Map-15 Апр-15 OKT-15 Noe-15 lav-14 Φεβ-14 Map-14 ОКТ-14 Φεβ-15 **Δ**εκ-15

Week of human case illness onset (or hospitalization or reporting if onset not published)

Ian Mackay, www.virologydownunder.blogspot.com.au

EMERGING INFECTIOUS DISEASES[®]

EID journal

May 2014

Subscribe

About the Journal

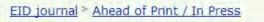
Ahead of Print / In Press

Stability of Middle East Respiratory Syndrome Coronavirus in Milk

Author Resource Center

Medscape CME

More Content


Social Media

Announcement Calendar

Contact Us

Related Articles

Use of Norovirus Genotype Profiles to

У Tweet 🚦

Share

Volume 20, Number 7-July 2014

Letter

Recommend 15

Stability of Middle East Respiratory Syndrome Coronavirus in Milk

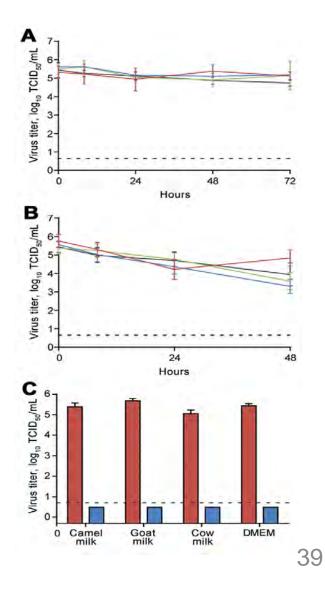
Suggested citation for this article

To the Editor: Middle East respiratory syndrome coronavirus (MERS-CoV) was first diagnosed in humans in 2012. Human-tohuman transmission of MERS-CoV has been limited, and the transmission route is still unclear. On the basis of epidemiologic studies, involvement of an animal host has been suggested (<u>1</u>). Dromedary camels have been identified as a possible intermediate host on the basis of MERS-CoV antibodies and detection of MERS-CoV viral RNA in respiratory swab samples (<u>1</u>-<u>3</u>). Furthermore, MERS-CoV genome sequences obtained

Article Contents

- Letter
- Acknowledgments
- References
- Figure
- Suggested Citation

CAMEL MILK


MERS-CoV could survive for

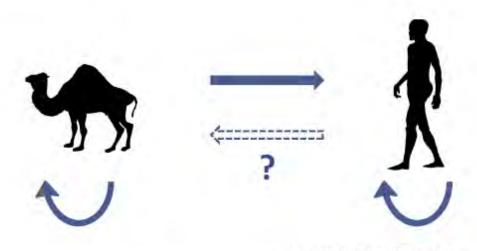
prolonged periods in milk

• viable virus was not detectable

after pasteurization

van Doremalen N, et al, EID 2014

CAMEL MILK


OTHER DISEASES ASSOCIATED WITH CAMELS

- MERS-CoV
- Tuberculosis
- Rift valley fever
- Brucellosis
- Adenovirus Common Respiratory viruses
- Trypanosomiasis
- Equine Herpes virus, camelpox
- GAPS in data NEED for further studies!!!

Evolution of MERS-CoV in camels Recent SCIENCE study

- 5 lineages in camels
- Co-circulation of multiple lineages
- At least 6 recombination events common in RNA viruses --> ?? Increased pathogenicity
- Lineage 5, i.e. Ryadh & S. Korea/China outbreaks of recombinant origin
- Occurred between12/2013 & 6/2014

Evolution of MERS-CoV in camels Recent SCIENCE study

Trends in Microbiology

Figure 1. Four Possible Routes for MERS-CoV Transmission. The well accepted human-to-human, human-to-camel, and camel-to-camel are labeled in solid arrows. The possible and ignored human-to-camel transmission is labeled in a dashed arrow. The camel and human images courtesy of Steven Traver and T. Michael Keesey.

Sabir, J.S. et al. (2016) Science 351, 81–84 Lin Du, GZ Han. Trends in Microbiology, February 2016, Vol. 24, No. 2 43

RAPID COMMUNICATIONS

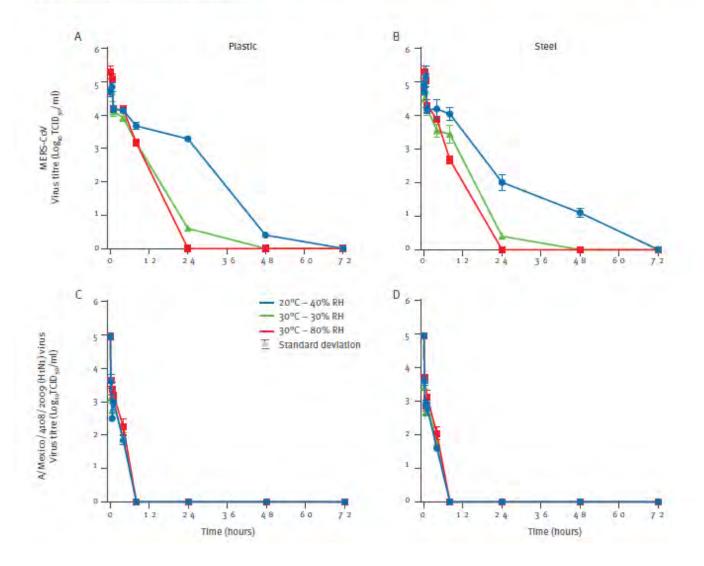
Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions

N van Doremalen¹, T Bushmaker¹, V J Munster (vincent.munster@nih.gov)¹

1. Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA

Citation style for this article:

van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. 2013;18(38):pii=20590. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20590


The stability of Middle East respiratory syndrome coronavirus (MERS-CoV) was determined at $20^{\circ}C - 40^{\circ}$ relative humidity (RH); $30^{\circ}C - 30^{\circ}$ RH and $30^{\circ}C - 80^{\circ}$ RH. MERS-CoV was more stable at low temperature/ low humidity conditions and could still be recovered after 48 hours. During aerosolisation of MERS-CoV, no decrease in stability was observed at $20^{\circ}C - 40^{\circ}$ RH. These data suggest the potential of MERS-CoV to be transmitted via contact or fomite transmission due to prolonged environmental presence. Article submitted on 10 September 2013 / published on 19 September 2013

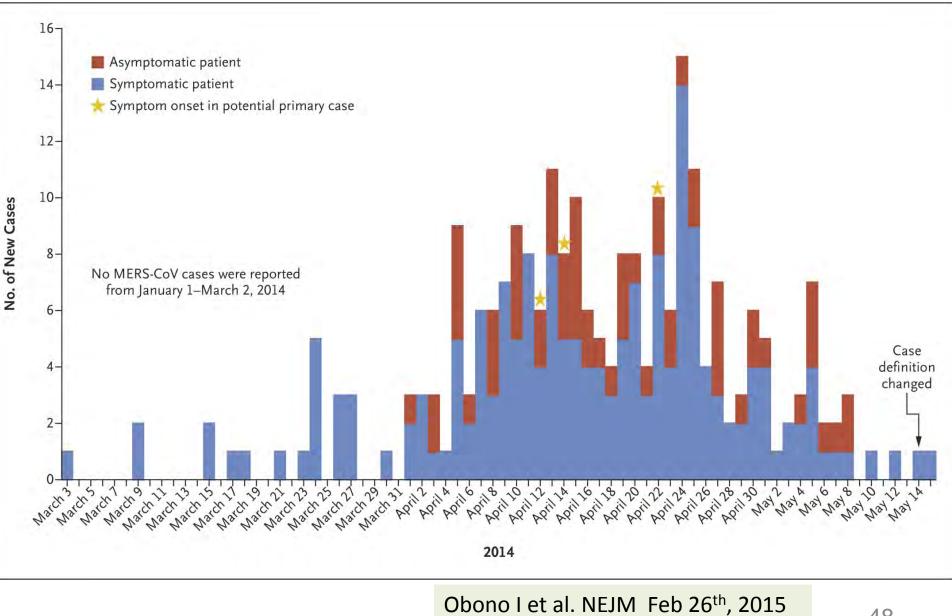
Environmental stability

MERS-CoV (isolate HCoV-EMC/2012) and A/ Mexico/4108/2009 (H1N1) virus were propagated and titrated by end-point titration on VeroE6 cells (for MERS-CoV) and Madin-Darby canine kidney (MDCK) cells (for A/Mexico/4108/2009 (H1N1) virus) as previously described [9,10]. To determine the environmental stability of the two viruses, 100 μ l of 10⁶ tissue culture infective dose 50 (TCID₅₀) of MERS-CoV or A/ Mexico/4108/2009 (H1N1) virus was spotted in droplets of 5 μ l on the surface of steel or plastic washers

FIGURE 1

Viability over time of Middle East respiratory syndrome coronavirus (MERS-CoV) and A/Mexico/4108/2009 (H1N1) virus under different environmental conditions

N van Doremalen et al Euro Surveill. 2013;18(38) $_{45}$

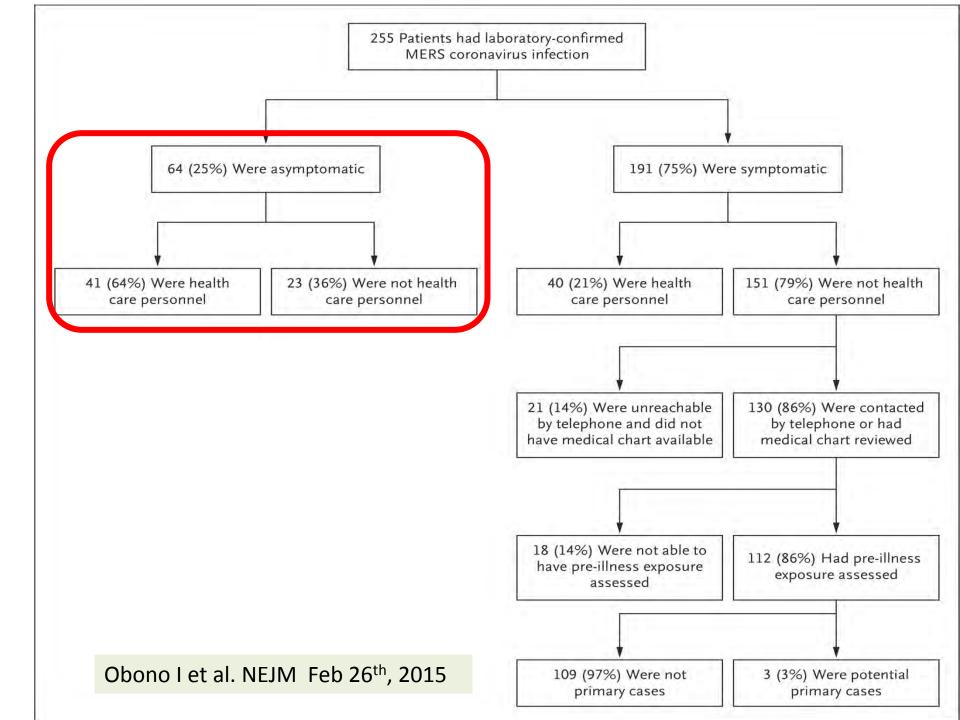

MERS-CoV

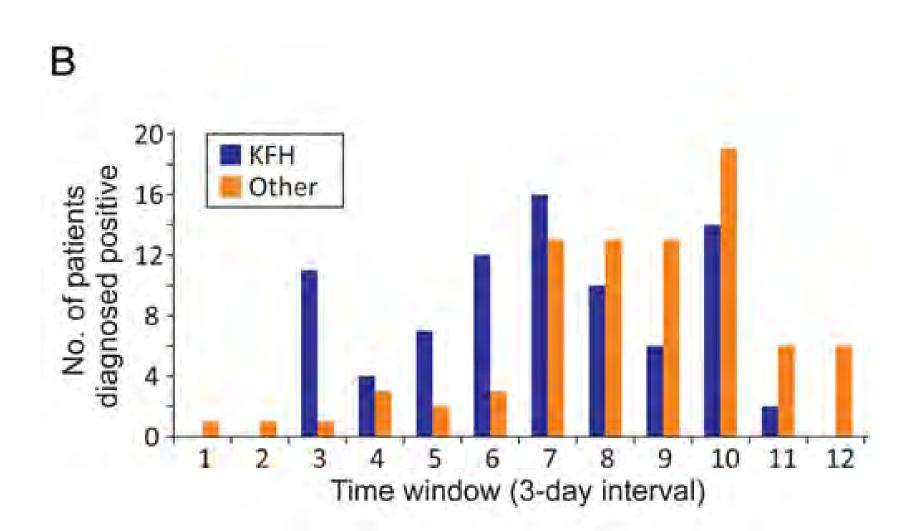
Human - Human transmission

Human to human – MERS CoV

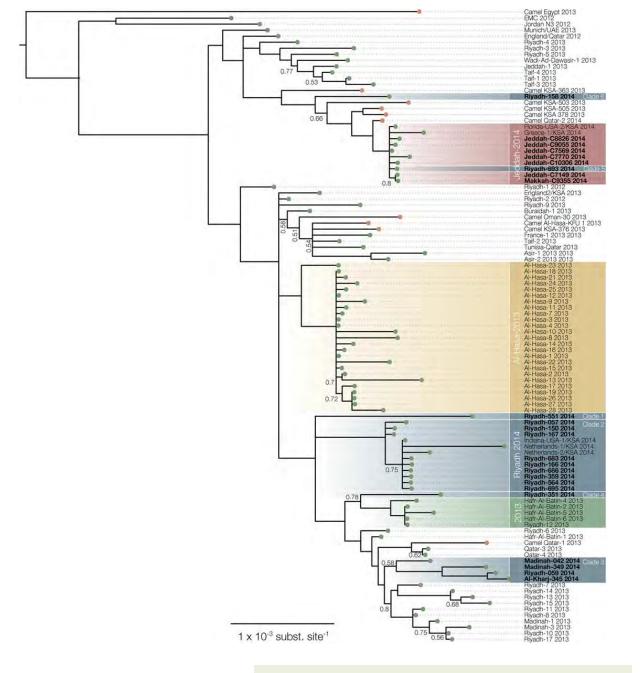
- R₀ is <1 unless NO Infection Control!!!
- Case clusters
 - UK, Tunisia, Italy, S Arabia, France
 - 2ry cases milder, asymptomatic
- > 50% of lab confirmed cases in HC settings

- 2ry transmission in households
 - 26 index \rightarrow 280 contacts \rightarrow 12 probable cases


Drosten C et al CID 2015:60

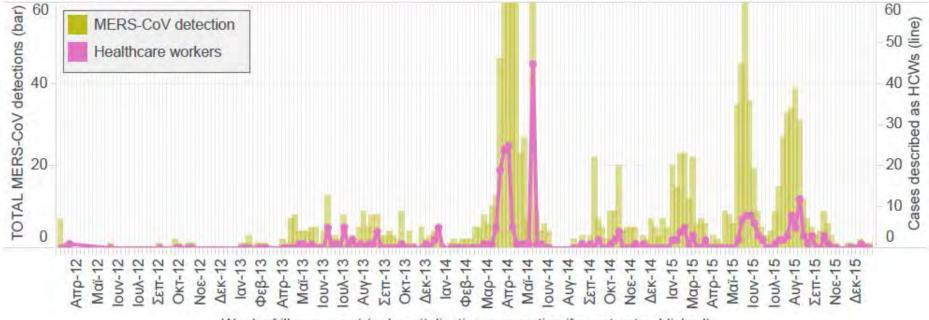

48

Source in Jeddah outbreak 2014


- Admission to health unit 34%
- Visit in outpatient offices 62%
- Patient visit 17%
- NO contact with healthcare 22%

• \geq 1 sources / exposures !!!

Drosten C et al CID 2015:60



Drosten C et al CID 2015:60

MERS-CoV, HCWs / all cases

HCWs

Number of times a MERS-CoV positive human was described as being a healthcare worker (HCW), by WEEK

Week of illness onset (or hospitalization or reporting if onset not published)

Ian Mackay, www.virologydownunder.blogspot.com.au

MERS-CoV Clinical Picture - Diagnosis - Rx

Clinical picture

- Analysis 144 lab. confirmed & 17 probable
 - 63,4% -> severe respiratory disease, ARDS, MOF
 - -76% w \geq 1 underlying condition, p<0.001
 - Renal failure, Diabetes Melitus, Heart Diseases
 - 18 asymptomatic

MERS-CoV DIAGNOSIS

• Collaboration w Reference laboratories

• rRT-PCR testing of lower respiratory specimens

MERS-CoV DIAGNOSIS

Table 1. Specimens to be collected from symptomatic patients and asymptomatic contacts

Patient	Test	Type of sample	Timing	Storage and transportation	Remarks
Symptomatic	RT-PCR	Lower respiratory tract - sputum - aspirate - lavage Upper respiratory tract - nasopharyngeal and oropharyngeal swabs - nasopharyngeal	Collect on presentation. To confirm clearance of the virus, sample collection to be repeated until the results are negative on 2 sequential samples.	If the specimen will reach the laboratory in less than 72 hours, store and ship at 4°C. If the specimen will reach the laboratory in more than 72 hours,	package system for transportation.
		aspirate ship on c	store at -80°C and ship on dry ice or liquid nitrogen.		
	distribut body: ot	For monitoring the distribution of virus in the body: other sample types, stool, urine			World Healt Organizatio

MERS-CoV DIAGNOSIS

S ymptomatic	Serology	Serum for serological testing.	Paired samples are necessary for confirmation with the initial sample collected in the first week of illness and the second ideally collected 2-3 weeks later.	As above.	As above.
			If only a single serum sample can be collected, this should occur at least 14 days after onset of symptoms for determination of a probable case.		
Asymptomatic Contact (particularly in	PCR	Nasopharyngeal and oropharyngeal swabs; sputum if possible.	Within 14 days of last documented contact.	As above.	As above.
health-care centre associated outbreaks or other situations	Serology	Serum	Baseline serum taken within 14 days of last documented contact and convalescent serum taken 2-3 weeks later.	As above.	As above.
of high-intensity contact)			If only a single sample is possible, collect at least 14 days after last documented contact		World Health Organization

Diagnosis - typing MERS-CoV 2015-16

Journal of Clinical Virology 64 (2015) 83-87

Contents lists available at ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Reliable typing of MERS-CoV variants with a small genome fragment

VIROLOGY

Saskia L. Smits^{a,b}, V. Stalin Raj^a, Suzan D. Pas^a, Chantal B.E.M. Reusken^a, Khaled Mohran^{c,d}, Elmoubasher A.B.A. Farag^e, Hamad E. Al-Romaihi^e, Mohd M. AlHajri^e, Bart L. Haagmans^a, Marion P. Koopmans^{a,f,*}

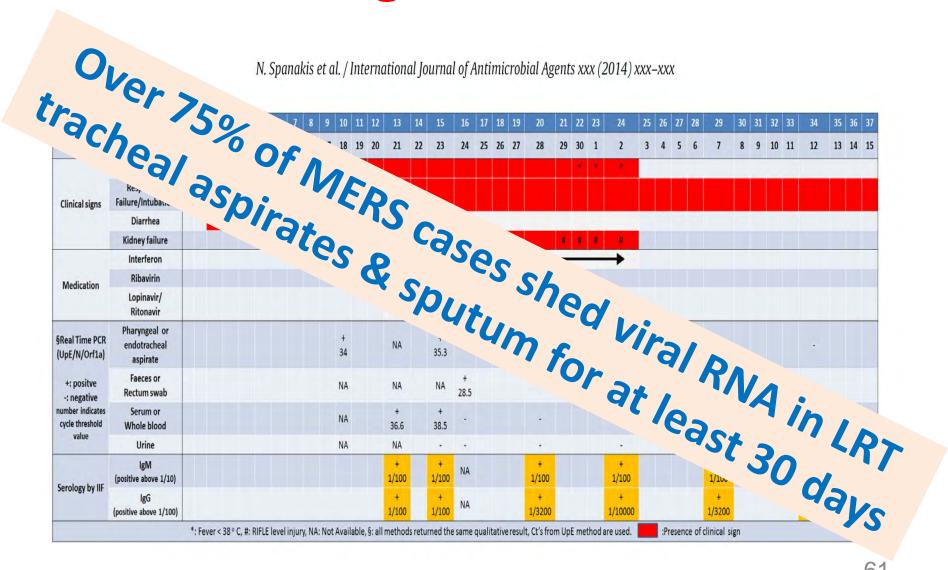
^a Department of Viroscience, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, Netherlands

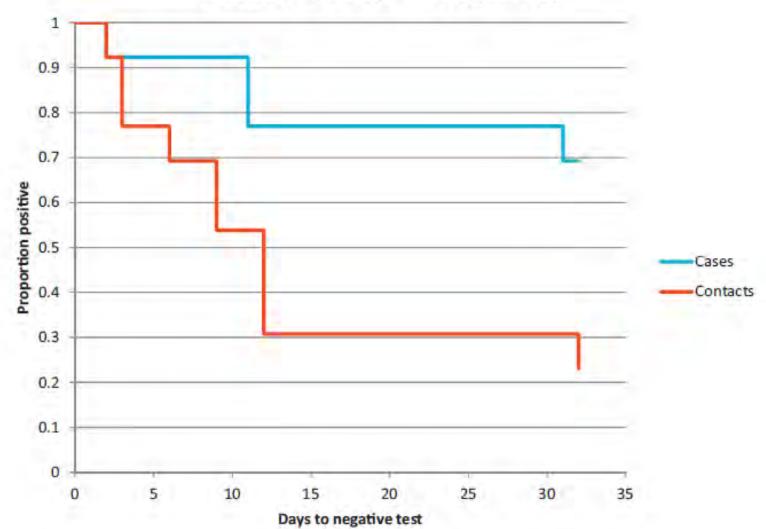
^d Biotechnology Research Department, Animal Health Research Institute, Agricultural Research Center, Egypt

^e Supreme Council of Health, Doha, Qatar

^f Virology Division, Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment, Bilthoven 3720BA, Netherlands

^b ViroClinics BioSciences BV, Marconistraat 16, 3029 AK Rotterdam, Netherlands


^c Ministry of the Environment, Doha, Qatar


Viral shedding & 2ⁿ case in Greece!

N. Spanakis et al. / International Journal of Antimicrobial Agents xxx (2014) xxx-xxx

	DAY OF ILNESS	0	1 2	3	4	5	6 7	8	9	10	11	12	13	14	15	16	17	18	19 20	21	22	23	24	25	26	27	28	29	30	31	32 33	34	35	36	3
	DATE (APRIL - MAY)	8 9	10	11	12	13	14 1	5 16	17	18	19	20	21	22	23	24	25	26	27 28	29	30	1	2	3	4	5	6	7	8	9	10 11	12	13	14	1
	Fever (>38° C)																				1	•													
Clinical signs	Respiratory Failure/Intubation																																		
	Diarrhea																																		
	Kidney failure																				#	8													
	Interferon												-	_	_			-		-			+												
Medication	Ribavirin												-			-		-	-																
incuration.	Lopinavir/ Ritonavir												•		_		-	_			+														
Real Time PCR UpE/N/Orf1a)	Pharyngeal or endotracheal aspirate									+ 34			NA		+ 35.3	NA			+ 36.4			C	+ 35												
+: positve -: negative	Faeces or Rectum swab									NA			NA		NA	+ 28.5							•					•				•			
umber indicates cycle threshold value	Serum or Whole blood									NA			+ 36.6		+ 38.5								•					•							
value	Urine									NA			NA		•																	•			
Serology by IIF	IgM (positive above 1/10)												+ 1/100		+ 1/100	NA			+ 1/10	0			+ 1/100					+ 1/100				+ 1/100			
NUMBY BY BY	IgG (positive above 1/100)												+ 1/100		+ 1/100	NA			+ 1/320	0			+ 1/10000				1	+				+ 1/3200	T		

Viral shedding & 2ⁿ case in Greece!

Number of days to negativity

International Journal of Infectious Diseases 29 (2014) $307_{\overline{2}}308$

Rx - MERS-CoV 2016

INTERIM GUIDANCE DOCUMENT

Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do

11 February 2013

Rx - MERS-CoV 2016

ISARIC

Protecting and improving the nation's health

Treatment of MERS-CoV: Information for Clinicians Clinical decision-making support for treatment of MERS-CoV patients

5 September 2015 v3.0

Rx - MERS-CoV 2016 ISARIC & WHO

- Benefit likely to exceed risk
 - -Convalescent serum
 - -Interferons esp b
 - -Lopinavir
 - -Monoclonal & polyclonal Abs

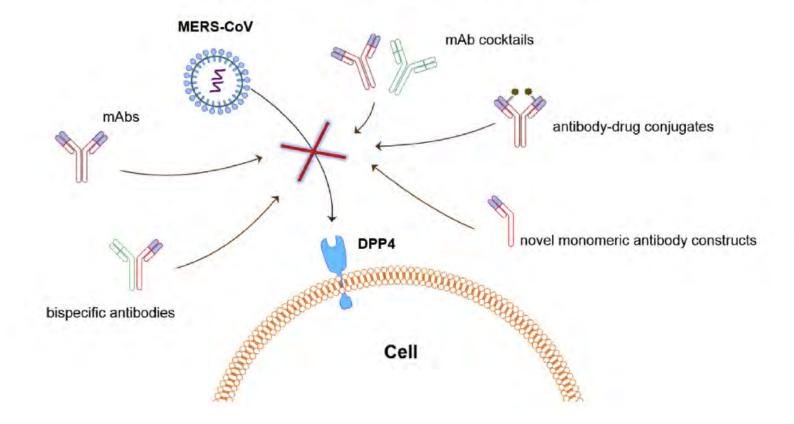
Rx - MERS-CoV 2016

Strength of evidence

	Study Focus: *	Quality of Best Available Evidence®	Order of Recommendation¥
Convalescent plasma ≠	SIV; SA; SC; MIV	SC (Moderate)	1
Interferon	SIV; SA; SC; MIV	MIV (Low)	2
Protease Inhibitors	SIV; SA; SC	SIV (Very Low)	2
Intravenous Immunoglobulin	SIV; SA; SC; MIV	Nil	3
Nitazoxanide	Nil	Nil	3
Others e.g. Cyclosporin A	SIV; MIV	MIV (Very Low)	3
Ribavirin	SIV; SA; SC	SIV (Very Low)	4
Corticosteroids	SIV; SA; SC	SA (Low)	4
Interferon plus ribavirin	SIV; SC; MIV; MA	MA (Very Low)	4

≠ Hyperimmune globulin or human neutralising monoclonals when available. The latter were shown active in SARS animal models.

* SARS in vitro (SIV); SARS animal (SA); SARS clinical (SC); MERS-CoV in vitro (MIV); MERS animal (MA)



Development of human neutralizing monoclonal antibodies for prevention and therapy of MERS-CoV infections

Tianlei Ying a,*, Haoyang Li a, Lu Lu a, Dimiter S. Dimitrov b, Shibo Jiang a,c

^a Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Shanghai 200032, China ^b Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA

T. Ying et al. / Microbes and Infection 17 (2015) 142-148

Virology 490 (2016) 49-58

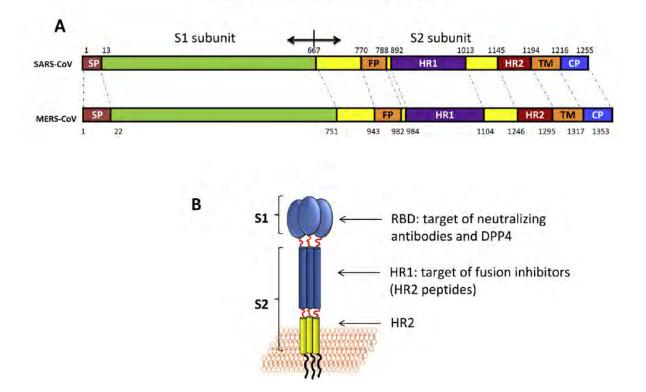
3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012

Reed F. Johnson ^{a,*}, Ulas Bagci ^{b,h}, Lauren Keith ^c, Xianchun Tang ^d, Daniel J. Mollura ^b, Larry Zeitlin ^e, Jing Qin ^f, Louis Huzella ^c, Christopher J. Bartos ^c, Natasha Bohorova ^e, Ognian Bohorov ^e, Charles Goodman ^e, Do H. Kim ^e, Michael H. Paulty ^e, Jesus Velasco ^e, Kevin J. Whaley ^e, Joshua C. Johnson ^c, James Pettitt ^c, Britini L. Ork ^c, Jeffrey Solomon ⁱ, Nicholas Oberlander ^c, Quan Zhu ^d, Jiusong Sun ^d, Michael R. Holbrook ^c, Gene G. Olinger ^c, Ralph S. Baric ^g, Lisa E. Hensley ^c, Peter B. Jahrling ^{a,c}, Wayne A. Marasco ^d

Contents lists available at ScienceDirect

Virus Research

Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein



Shuai Xia^{a,1}, Qi Liu^{a,c,1}, Qian Wang^a, Zhiwu Sun^a, Shan Su^a, Lanying Du^b, Tianlei Ying^a, Lu Lu^{a,**}, Shibo Jiang^{a,b,*}

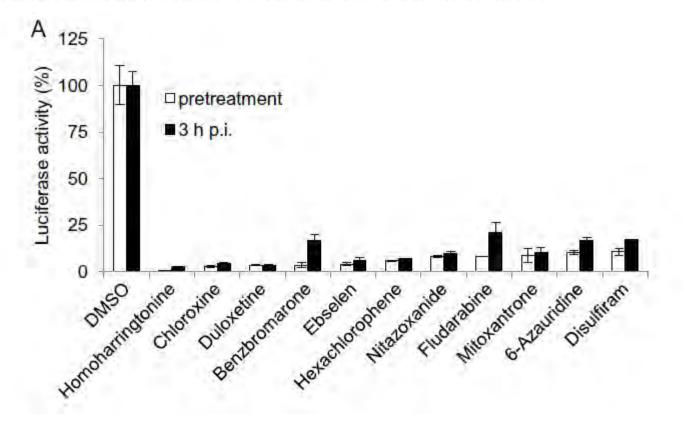
^a Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China

^b Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA

S. Xia et al. / Virus Research 194 (2014) 200-210

Contents lists available at ScienceDirect

Antiviral Research


journal homepage: www.elsevier.com/locate/antiviral

A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs

Jianzhong Cao, J. Craig Forrest, Xuming Zhang*

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States

MERS – CoV Infection control

State of the Science Review

Middle East respiratory syndrome coronavirus: Implications for health care facilities

Helena C. Maltezou MD, PhD^{a,*}, Sotirios Tsiodras MD, PhD^b

^a Department for Interventions in Health-Care Facilities, Hellenic Center for Disease Control and Prevention, Athens, Greece ^b Fourth Department of Internal Medicine, University of Athens Medical School, Attikon University Hospital, Athens, Greece

American Journal of Infection Control 42 (2014) 1261-5

CrossMark

MERS – CoV Infection control

Middle East respiratory syndrome coronavirus Case definition for reporting to WHO Interim case definition 14 July 2015

http://www.who.int/csr/disease/coronavirus_infections/case_definition/en/

MERS-CoV / Case definition Confirmed

A person with laboratory confirmation of MERS-CoV infection¹, irrespective of clinical signs and symptoms.

MERS-CoV / Case definition Probable

Definition 1

- A febrile acute respiratory illness with clinical, radiological, or histopathological evidence of pulmonary parenchymal disease (e.g. pneumonia or Acute Respiratory Distress Syndrome); and
- Direct epidemiologic link² with a confirmed MERS-CoV case; and
- Testing for MERS-CoV is unavailable, negative on a single inadequate specimen³ or inconclusive.⁴

MERS-CoV / Case definition Probable

Definition 2

- A febrile acute respiratory illness with clinical, radiological, or histopathological evidence of pulmonary parenchymal disease (e.g. pneumonia or Acute Respiratory Distress Syndrome); and
- The person resides or travelled in the Middle East, or in countries where MERS-CoV is known to be circulating in dromedary camels or where human infections have recently occurred; and
- Testing for MERS-CoV is inconclusive.⁴

MERS-CoV / Case definition Probable

Definition 3

- An acute febrile respiratory illness of any severity; and
- Direct epidemiologic link² with a confirmed MERS-CoV case; and
- Testing for MERS-CoV is inconclusive.⁴

MERS – CoV Infection control

State of the Science Review

Middle East respiratory syndrome coronavirus: Implications for health care facilities

CrossMark

Helena C. Maltezou MD, PhD^{a,*}, Sotirios Tsiodras MD, PhD^b

^a Department for Interventions in Health-Care Facilities, Hellenic Center for Disease Control and Prevention, Athens, Greece ^b Fourth Department of Internal Medicine, University of Athens Medical School, Attikon University Hospital, Athens, Greece

American Journal of Infection Control 42 (2014) 1261-5

MERS – CoV Infection control

- Multiple events of health-care associated transmission
 - Pts w comorbidities --> severe dz
 - HCW frequently affected --> milder dz
- GAPS in infection control in all events !!!

EMERGING INFECTIOUS DISEASES[®]

Volume 20, Number 4-April 2014 Contact Investigation for Imported Case of Middle East Respiratory Syndrome, Germany

Annicka Reuss ⊠, Annette Litterst, Christian Drosten, Michael Seilmaier, Merle Böhmer¹, Petra Graf, Hermann Gold, Clemens-Martin Wendtner, Arina Zanuzdana, Lars Schaade, Walter Haas, and Udo Buchholz

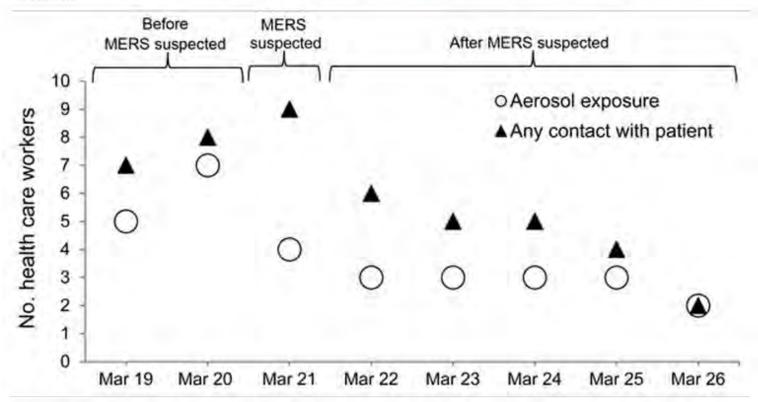


Figure 2. Daily number of health care workers who had contact with a patient infected with Middle East respiratory syndrome (MERS) coronavirus who was hospitalized in Germany, March 19–26, 2013.

MERS-CoV / IHR EC 2015

- Recent KSA mission 23 August 2015
- Hospital based outbreak
 - Virus transmission in the ER of the most heavily affected hospital !!!
 - Despite established triage!!!
 - overcrowded situations, movement of pts before dx,

breakdowns in application of IPC measures

MERS-CoV / IPC

Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection

Interim guidance Updated 4 June 2015

WHO/MERS/IPC/15.1

World Health Organization

Background

WHO has updated the interim guidance that was published on 6 May 2013 to meet the urgent need for up-to-date information and evidence-based recommendations for the safe care of patients with probable or confirmed Middle East respiratory syndrome coronavirus (MERS-CoV) infection. The interim recommendations are informed by evidencebased guidelines WHO has published, including the *Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. WHO Guidelines*¹ and review of current evidence on MERS-CoV infection. The recommendations have been reviewed by experts in infection prevention and control (IPC) and other technical areas (see Acknowledgements for names and transmission. Health-care institutions are advised to consider reinforcing a service for the oversight of HCWs' health to ensure a safe environment for patients and HCWs. It is crucial that HCWs are provided with the best locally available protection for caring for MERS-CoV-infected patients and are followed up if exposure has occurred.

This guidance summarizes:

- Principles of IPC strategies associated with health care
- IPC precautions:
 - for providing care to all patients
 - for providing care to ARI patients, and
 - for providing care to patients wi confirmed MERS-CoV infectior

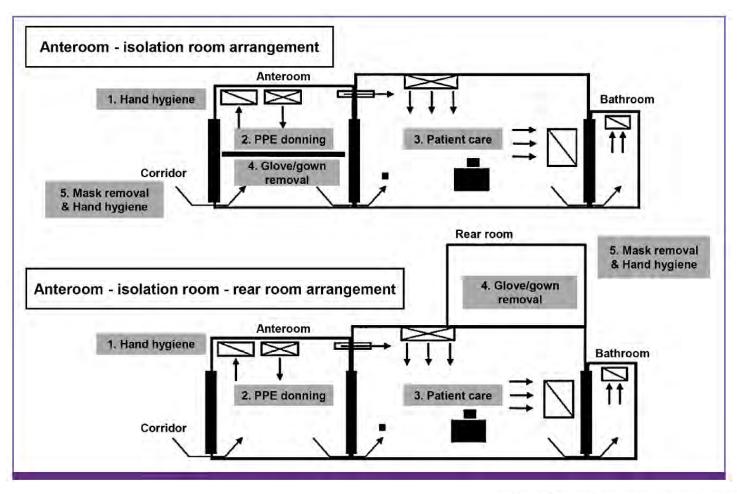
MERS - CoV / Infection control 2016

- Infection prevention & Control critical to prevent Transmission in HC facilities!!!
- Not possible to identify pts early

Early symptoms non specific

- HCW should apply standard precautions w all
- **Droplet precautions** w all URI
- **Contact & eye protection** w any care of cases of probable or confirmed infection
- Airborne w aerosol generating procedures

USE a medical mask if you are close to a patient with acute respiratory symptoms



Wash your hands before and after wearing any PPE (personal protective equipment)

MERS-CoV / 2016 donning/doffing, S Korea

Viral Shedding and Environmental Cleaning in Middle East Respiratory Syndrome Coronavirus Infection

Joon Young Song^{1,2,3}, Hee Jin Cheong^{1,2}, Min Joo Choi¹, Ji Ho Jeon¹, Seong Hee Kang¹, Eun Ju Jeong¹, Jin Gu Yoon¹, Saem Na Lee¹, Sung Ran Kim³, Ji Yun Noh^{1,2}, and Woo Joo Kim^{1,2}

¹Division of Infectious Diseases, Department of Internal Medicine, ²Asian Pacific Influenza Institute (APII), Korea University College of Medicine; ³Infection Control Unit, Korea University Guro Hospital, Seoul, Korea

Viral shedding lasted 31 and 19 days from symptom onset in two patients with east respiratory syndrome coronavirus (MERS-CoV) pneumonia, respectively. Environmental real-time RT-PCR was weakly positive for bed guardrail and monitors. Even after cleaning the monitors with 70% alcohol-based disinfectant, RT-PCR was still weakly positive, and converted to negative only after wiping with diluted sodium chlorite. Further studies are required to clarify the appropriate methods to clean environments during and after treatment of patients with MERS-CoV infection.

Key Words: Virus shedding; Middle East Respiratory Syndrome; Coronavirus

MERS-CoV/Infection prevention 2016

- People w underlying disease are high risk
 - DM, Renal failure, chronic lung dz, immunocompromised
 - Avoid contact w animals particularly camels
 - In areas w potential virus circulation
- General hygiene measures
 - Regular hand washing, avoid contact w sick animals
- Food hygiene practices
 - Avoid --> raw camel milk/urine, not properly cooked meat

MERS-CoV WHO 2016, lay people

Consult a health worker if you have fever (38 °C or higher), cough or difficulty breathing. Inform them of your recent travel history

Avoid close contact with people if you are sick

Wash your hands regularly with soap and water and maintain good personal hygiene

Cover your mouth and nose with a tissue or your sleeve when coughing or sneezing

MERS-CoV WHO 2016 close contacts, S Korea

 Table 5. Risk assessment and recommendations for asymptomatic MERS contacts

Risk classification	Disease status of the infection source			
RISK Classification	Asymptomatic	Symptomatic, without pneumonia	Symptomatic, with pneumonia	
High-risk close contact	Quarantine	Quarantine	Quarantine	
Intermediate-risk close contact	Contact surveillance	Quarantine	Quarantine	
Casual contact	No intervention	Contact surveillance	Contact surveillance	

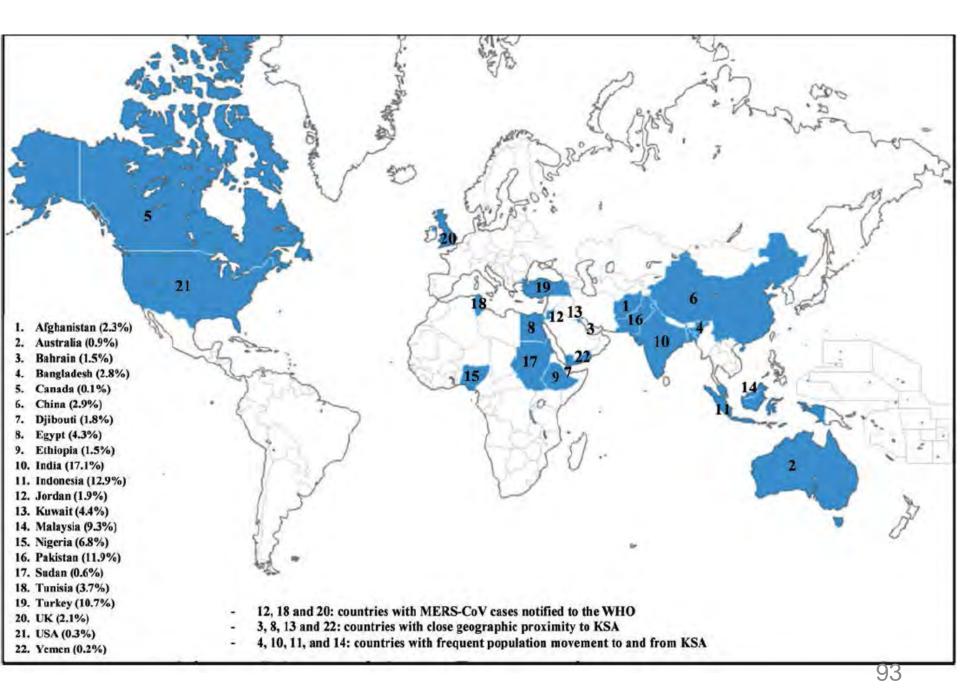
High-risk close contact: contact during an aerosol-generating procedure (e.g. nebulizer, intubation, endotracheal suction, bronchoscopy, etc.). Intermediate-risk close contact: contact within 2 m distance of a laboratory-confirmed MERS patient or a stay at the same ward/floor of a hospital exposed to laboratory-confirmed MERS patients. Casual contact: brief contact with >2 m distance from a laboratory-confirmed MERS patients. MERS, Middle East Respiratory Syndrome.

Table 6. Control of visitors to Middle East countries or healthcare facilities affected by MERS outbreaksª depending on symptom manifestations

Fever	Respiratory symptoms	Assessment	Intervention plan
+	+	MERS-suspected	PCR test, hospitalization
+	-	Medical surveillance	PCR test, discharge and self-quarantine for 14 days from the last exposure ^b
-	+	Medical surveillance	PCR test, discharge and self-quarantine for 14 days from the last exposure ^b
-	-	No abnormalities	No interventions

MERS, Middle East Respiratory Syndrome; PCR, polymerase chain reaction.

^aA healthcare facility with two or more cases of laboratory-confirmed MERS-CoV infection is regarded as being affected by MERS outbreak.


^bIn the presence of pneumonia, the patient is classified as a patient with suspected MERS-CoV infection and placed under inpatient quarantine care.

Journal of Infectious Diseases Advance Access published April 15, 2014

MAJOR ARTICLE

Prevalence of MERS-CoV Nasal Carriage and Compliance With the Saudi Health Recommendations Among Pilgrims Attending the 2013 Hajj

Ziad A. Memish,^{1,2} Abdullah Assiri,¹ Malak Almasri,¹ Rafat F. Alhakeem,¹ Abdulhafeez Turkestani,³ Abdullah A. Al Rabeeah,¹ Jaffar A. Al-Tawfiq,^{4,5} Abdullah Alzahrani,¹ Essam Azhar,⁶ Hatem Q. Makhdoom,⁷ Waleed H. Hajomar,⁸ Ali M. Al-Shangiti,⁹ and Saber Yezli¹

EMERGING INFECTIOUS DISEASES[®]

Volume 20, Number 4-April 2014

Lack of MERS Coronavirus but Prevalence of Influenza Virus in French Pilgrims after 2013 Hajj

Philippe Gautret ⊠, Rémi Charrel, Samir Benkouiten, Khadidja Belhouchat, Antoine Nougairede, Tassadit Drali, Nicolas Salez, Ziad A. Memish, Malak al Masri, Jean-Christophe Lagier, Matthieu Million, Didier Raoult, Philippe Brouqui, and Philippe Parola

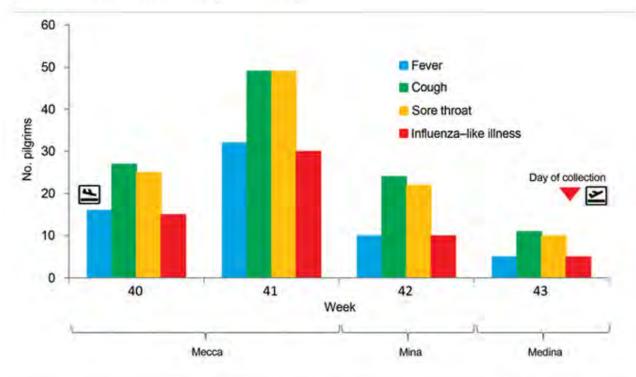


Figure. . Onset of respiratory symptoms by week, reported by 129 Hajj pilgrims from France during their stay in Saudi Arabia, October 2013.

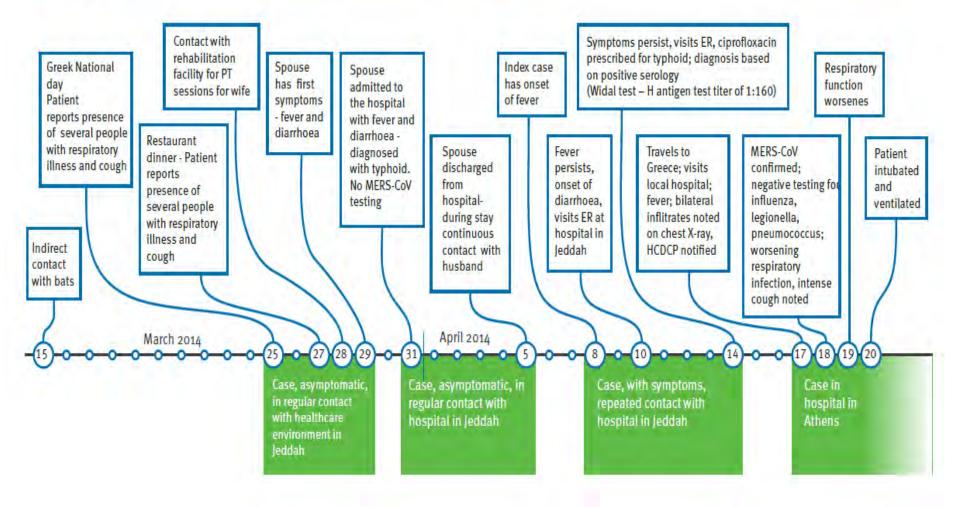
MERS - CoV / Travellers

RAPID COMMUNICATIONS

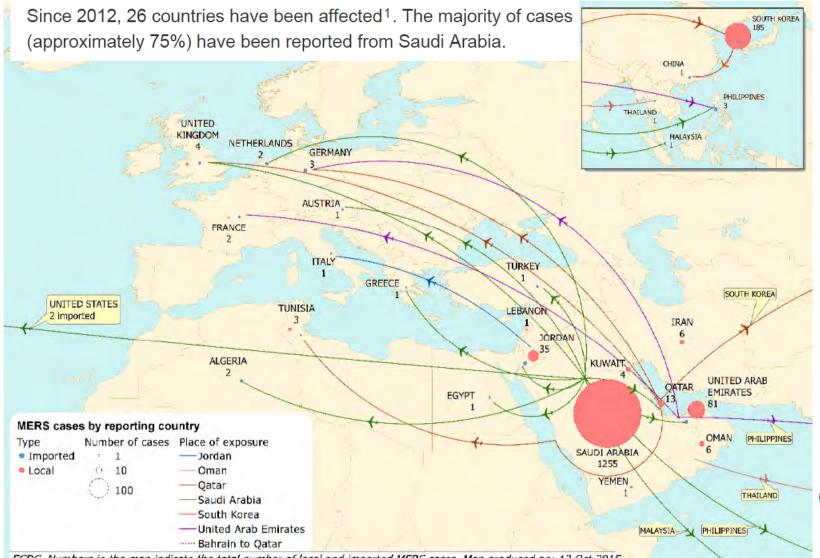
A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014

S Tsiodras (sotirios.tsiodras@gmail.com)^{1,2}, A Baka¹, A Mentis³, D Iliopoulos¹, X Dedoukou¹, G Papamavrou¹, S Karadima¹, M Emmanouil³, A Kossyvakis³, N Spanakis⁴, A Pavli¹, H Maltezou¹, A Karageorgou⁵, G Spala¹, V Pitiriga⁴, E Kosmas⁶, S Tsiagklis⁶, S Gkatzias⁶, N G Koulouris⁷, A Koutsoukou⁸, P Bakakos⁷, E Markozanhs⁷, G Dionellis⁷, K Pontikis⁸, N Rovina⁸, M Kyriakopoulou⁸, P Efstathiou⁵, T Papadimitriou¹, J Kremastinou¹, A Tsakris⁴, G Saroglou^{1,6}

- 1. Hellenic Center for Disease Control and Prevention, Athens, Greece
- 2. University of Athens Medical School, Athens Greece
- 3. Hellenic Pasteur Institute, Athens, Greece
- 4. Microbiology Department, University of Athens Medical School, Athens, Greece
- 5. National Health Operations Center, Athens, Greece
- 6. Metropolitan Hospital Athens Greece
- 7. First Department of Respiratory Medicine, University of Athens Medical School, Athens, Greece
- 8. Intensive Care Medicine first Department of Respiratory Medicine, University of Athens Medical School, Athens Greece

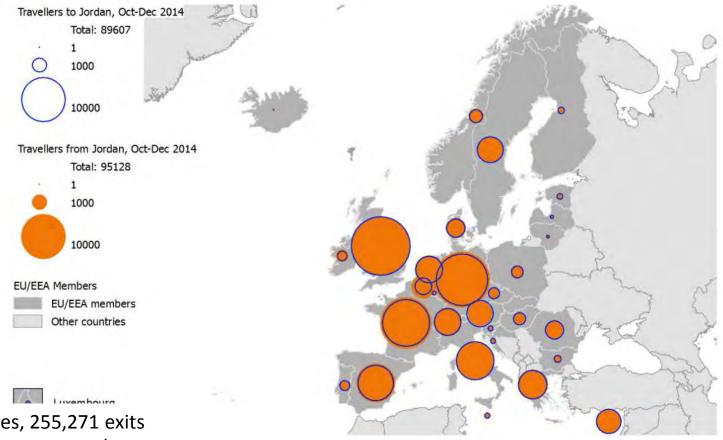

Citation style for this article:

Tsiodras S, Baka A, Mentis A, Iliopoulos D, Dedoukou X, Papamavrou G, Karadima S, Emmanouil M, Kossyvakis A, Spanakis N, Pavli A, Maltezou H, Karageorgou A, Spala G, Pitiriga V, Kosmas E, Tsiagklis S, Gkatzias S, Koulouris NG, Koutsoukou A, Bakakos P, Markozanhs E, Dionellis G, Pontikis K, Rovina N, Kyriakopoulou M, Efstathiou P, Papadimitriou T, Kremastinou J, Tsakris A, Saroglou G. A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014. Euro Surveill. 2014;19(16):pii=20782. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20782


Article submitted on 22 April 2014 / published on 24 April 2014

FIGURE

Timeline of possible exposure and clinical course of Middle East Respiratory Syndrome coronavirus infection case, Greece March-April 2014


MERS-CoV in other countries

ECDC. Numbers in the map indicate the total number of local and imported MERS cases. Map produced on: 13 Oct 2015

MERS-CoV in other countries the Jordan example

Figure 3. Number of travellers on commercial air carriers (excluding unscheduled charters), by EU/EEA country, to and from Jordan, October–December 2014.

251 280 entries, 255,271 exits In 6 months 95128 to EU/EEA countries N of border crossings from Arab countries 1,400,000 1,250,000 Jordanian passports

2nd case in Thailand in 7 months

14/2/2016

World Health Organization, Thailand confirms MERS CoV in traveler, WHO cautions against continued risk of importation

Thailand confirms MERS CoV in traveler, WHO cautions against continued risk of importation

SEAR/PR/1618

New Delhi, 24 January 2016: Thailand today confirmed Middle East respiratory syndrome coronavirus (MERS CoV) disease in a traveler, the second such case in the country in the last seven months, as WHO cautioned other member states in its South-East Asia Region against the continuing risks and the need to remain vigilant.

"The new case of MERS CoV is a reminder of the continued risk of importation of the disease from countries where it still persists. All countries need to further enhance surveillance for severe acute respiratory infections, focus on

MERS - CoV / Vaccine ?

Experimental vaccine for MERS developed

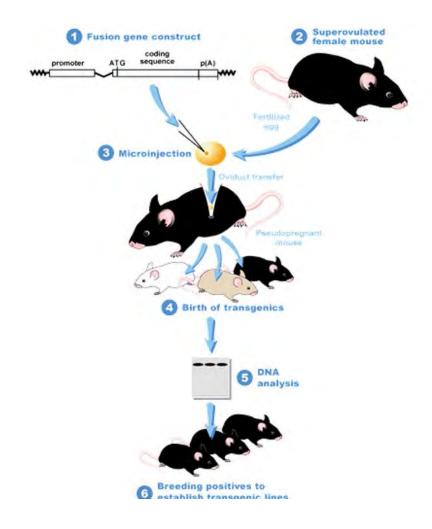
The experimental vaccine is based on a platform for a candidate that is said to protect against SARS. (File photo: Shutterstock)

Contact:

John Herrmann Vice President, General Counsel Novavax, Inc. 240-268-2000

Novavax Produces MERS-CoV Vaccine Candidate

Vaccine Volume 32, Issue 26, 30 May 2014, Pages 3169–3174


Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice

Christopher M. Coleman^{a, 1}, Ye V. Llu^{b, 1}, Haiyan Mu^b, Justin K. Taylor^a, Michael Massare^b, David C. Flyer^b, Gregory M. Glenn^b, Gale E. Smith^{b, 1}, Matthew B. Frieman^{a, 1}, **b** S. Coleman^{a, 1}, **c** S. Co

* University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA

Novavax, Inc. 22 Firstfield Rd, Gaithersburg, MD 20852, USA.

MERS - CoV Transgenic mouse

constitutive global expression of hCD26/DPP4

functional receptor

Iung and brain prime sites
for viral replication

Agrawal AS et al J Virol. 2015

MERS – CoV / Stress in HCW

CM&R Rapid Release. Published online ahead of print February 4, 2016 as doi:10.3121/cmr.2016.1303

Original Research

Healthcare Workers Emotions, Perceived Stressors and Coping Strategies During MERS-CoV Outbreak

Imran Khalid, MD, FCCP; Tabindeh J Khalid, MD; Mohammed R Qabajah, RN; Aletta G Barnard, RN; and Ismael A Qushmaq, MD

Khalid et al. 2016

MERS – CoV / Stress in HCW

Table 4. Factors that helped in reducing stress during MERS-CoV outbreak (Total n=117, Maximum Score 3)			
Number	Factors that helped to reduce stress	Mean (SD)	
1	Positive attitude from colleagues in your department	2.34 (0.74)	
2	None of the staff getting MERS after starting strict protective measures	2.34 (0.82)	
3	Improvement in patient's condition	2.30 (0.91)	
4	Your colleagues who were infected getting better	2.28 (0.78)	
5	Protective equipment provided to you by Hospital	2.10 (0.86)	
6	Clear guidelines from Hospital for infection prevention	2.07 (1.01)	
7	Your family members or friends outside hospital did not get MERS-CoV	1.97 (1.15)	
8	Decrease in MERS-CoV cases reported in news	1.9 <mark>4 (</mark> 0.99)	
9	Likelihood that you would get extra compensation for your exposure to MERS-CoV	1.90 (1.18)	
10	All healthcare professionals working together on front line	1.60 (1.05)	
11	Confidence in the hospital staff in case you got sick from MERS-CoV	1.58 (1.12)	
12	Not to do overtime	1.52 (1.08)	

13Sharing jokes or humor among colleagues1.43 (1.04)14Getting free meals from the hospital in your unit1.19 (1.16)

0= Not At All effective; 1= Mildly Effective; 2= Moderately Effective; 3= Extremely Effective in Reducing Stress

MERS – CoV / Stress in HCW

Table 6. Motivational factors to encourage continuation of work in future outbreaks (Total n=117,Maximum Score=3)

Number	Motivational factors for future outbreaks	Importance factor Mean (SD)
1	Similar adequate personal protective equipment supply by the Hospital	2.88 (0.41)
2	Available cure or vaccine for the disease	2.85 (0.35)
3	Family support	2.71 (0.64)
4	Compensation to family if disease related death at work	2.74 (0.71)
5	Financial recognition of efforts	2.68 (0.76)
6	Disability benefits if disabled from the disease	2.64 (0.75)
7	Recognition from management and supervisors for the extra efforts	2.55 (0.77)
8	Psychiatric help and therapy made available in work place to help reduce stress and anxiety	2.27 (0.99)
9	Not forced to do overtime	1.72 (1.16)
10	Reduced working hours during outbreaks	1.67 (1.22)

RAPID RISK ASSESSMENT

Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV)

21st update, 21 October 2015

- Majority of cases still from Middle East
- The source of the virus remains unknown, but the pattern of transmission and virological studies point towards dromedary camels in the Middle East as being a reservoir from which humans sporadically become infected through zoonotic transmission.
- Human-to-human transmission is amplified among household contacts and in healthcare settings.

- Transmission in hospital settings is still one of the main sources of infection
- Sporadic importation can be expected
- Risk of nosocomial spread in other countries!!!

 Efforts to contain the nosocomial clusters in the affected countries are vital to prevent wider transmission.

- However, w appropriate IPC
 - sustained human-to-human community transmission is unlikely

- Need ^{↑↑} awareness among HCW and appropriate IPC activities
- No travel restrictions
- Advice for travelers especially high risk ones & HCWs !!!
- Risk of wide spread transmission remains low

HOSPITAL LOCKDOWN!!!

- Ministry News
- Announcements
- Announcements on Private Sector Performance
- Events and Activities
- MOH Publications
- Health Conferences and

Ministry of Health Portal Kingdom of Saudi Arabia

MOH Portal F The Ministry Media Center Ministry News

Ministry News

MOH Closes a Private Hospital for non-Compliance with Infection Control Guidelines

23 February 2015

The Ministry of Health (MOH), represented by the Command and Control Center (CCC) of Riyadh Health Affairs General Directorate, closed a private hospital in Riyadh after failing to comply with infection control guidelines issued by the CCC to prevent the spread of infectious diseases.

The Director General of Riyadh Health Affairs, Dr. Adnan Al-Abdulkarim, said, "This nonstop step comes under direct

supervision of His Excellency the Minister of Health Mr. Ahmad bin Ageel Al-Khateeb, and in coordination with the

Journal of Infection and Public Health (2016) 9, 1-2

http://www.elsevier.com/locate/jiph

MERS CoV: A trigger for healthcare transformation

i of urgent care, n-depth analysis

nts was ongoing

The most rece prestigious tertia established Infe

hospital is located in the capital of Saudi Arabia. The outbreak was associated with 82 confirmed MERS CoV cases, and more than 5000 healthcare workers (HCWs) were screened for the virus. The hospital followed a written Infectious Disease

because the reopening of the hospital was imminent. There was a clear sense of urgency while the leadership addressed these issues. The culture of the organization was tested by this virus outbreak. An exposed patient that became symptomatic on

March 10 (Free Teleclass) BARRIERS TO TB INFECTION CONTROL IN DEVELOPING COUNTRIES Eltony Mugomeri Mtech, National University of Lesotho

March 16 (Free WHO Teleclass ... Europe) THE GLOBAL MYCOBACTERIUM CHIMAERA OUTBREAK IN CARDIAC SURGERY Dr. Hugo Sax, University of Zurich Hospitals Sponsored by the World Health Organization

March 17 (Free Teleclass)

INFECTION PREVENTION AND CONTROL WITH ACCREDITATION CANADA QMENTUM PROGRAM

Chingiz Amirov, Canadian Journal of Infection Control Sponsored by GOJO

March 31 SUCCESSFUL IMPLEMENTATION OF CATHETER-ASSOCIATED URINARY TRACT INFECTION BUNDLES: LESSONS LEARNED

www.webbertraining.com/schedulep1.php

TELECLASS EDUCATION VERS

THANKS FOR YOUR SUPPORT

Thanks to Teleclass Education PATRON SPONSORS

