NOROVIRUS AND HEALTHCARE FACILITIES: HOW TO KEEP THE VIRUS OUT AND WHAT TO DO WHEN IT GETS IN

Ben Lopman

PhD MSc

Associate Professor

Department of Epidemiology

Rollins School of Public Health

Emory University

Miren Iturriza-Gomara

MSc PhD FRCPath

Professor

Institute of Infection and Global

Health

University of Liverpool

Hosted by Paul Webber paul@webbertraining.com

www.webbertraining.com

November 10, 2016

Outline

- 1. Global burden and epidemiology
- 2. Outbreaks in health care facilities
- 3. Control

- 1. Virology
- 2. Clinical Disease
- 3. Vaccines

Global burden and epidemiology

Progress against diarrheal diseases...

Global Both sexes, All ages, DALYs per 100,000					
1990 rank	2013 rank				
1 Lower respiratory infect	1 Ischemic heart disease				
2 Diarrheal diseases	2 Lower respiratory infect				
3 Neonatal preterm birth	3 Diarrheal diseases				
4 Ischemic heart disease	4 Low back pain				
5 Neonatal encephalopathy	5 COPD				

...much work to be done still

Nearly 1 million under 5 deaths/year

Rotavirus: 250,000 to 500,000

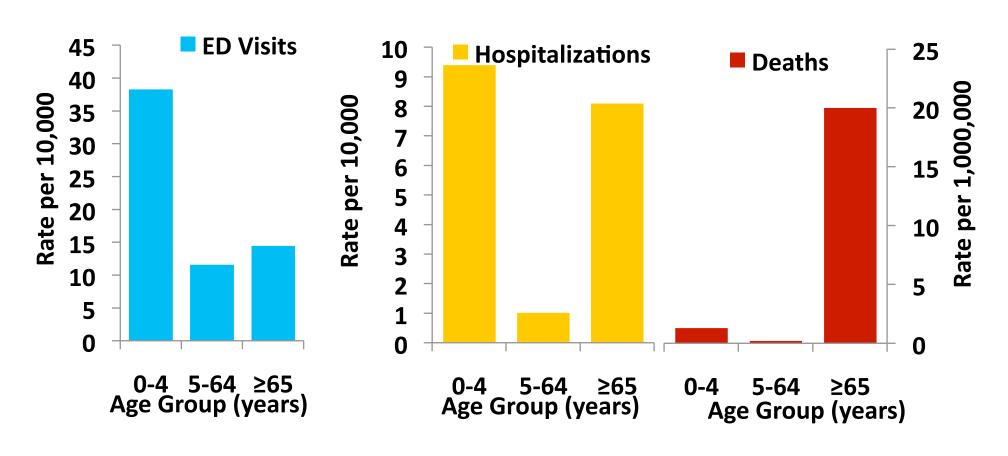
Norovirus: 70,000 to 200,000

Challenges in estimating [global] burden of norovirus

Diagnostics: availability

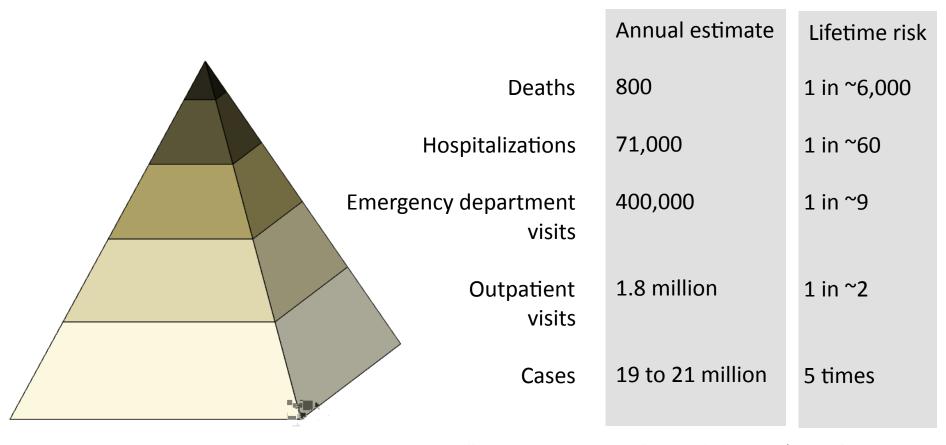
Diagnostics: interpretation

Not coded for in ICD-data


Sub-clinical cases

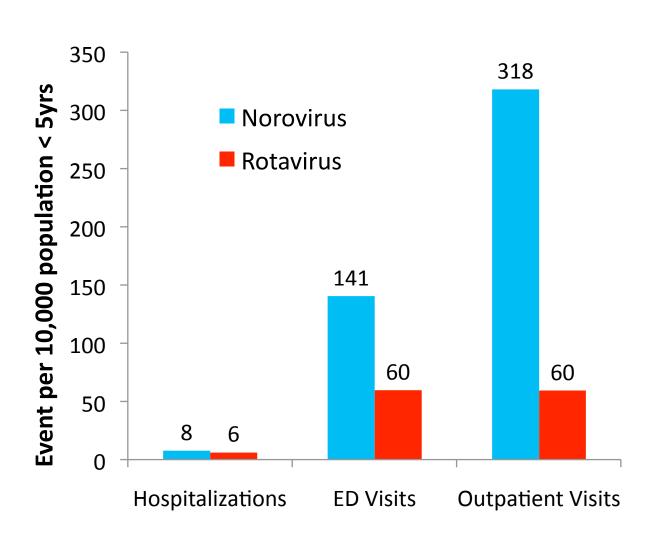
Little surveillance

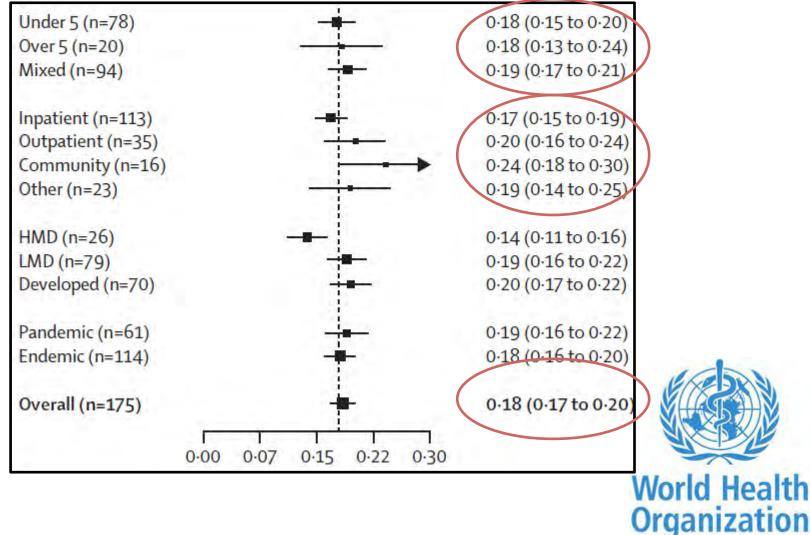
Few community studies



Age Specific Clinical Outcomes of Norovirus in the United States

Hall, Curns, McDonald, Parashar, Lopman, 2012 CID Lopman, Hall, Curns, Parashar, 2011 CID Gastañaduy, Hall, Curns, Parashar, Lopman, 2013 JID

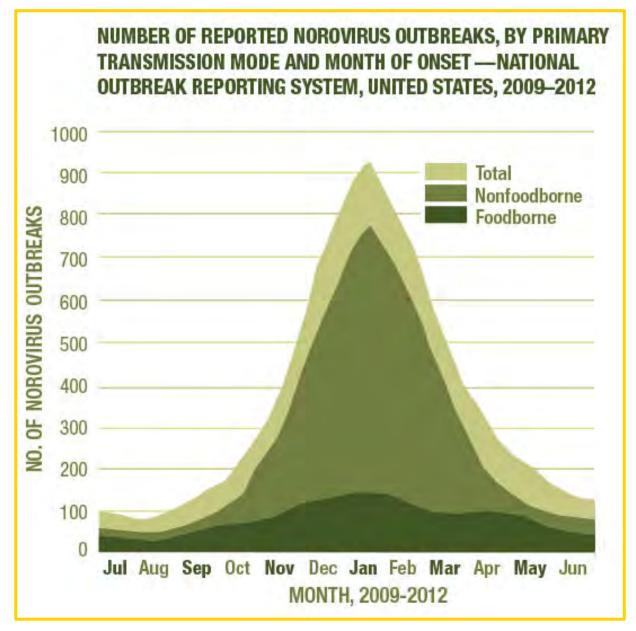

Norovirus disease burden in the United States


Hall, Lopman, Payne, Patel, Gastañaduy, Vinjé, Parashar, 2013 EID Hall, Curns, McDonald, Parashar, Lopman, 2012 CID Lopman, Hall, Curns, Parashar, 2011 CID Gastañaduy, Hall, Curns, Parashar, Lopman, 2013 JID Scallan et al, 2010 EID

Norovirus and Rotavirus Hospitalization, ED and outpatient rates 0 – 4 year olds

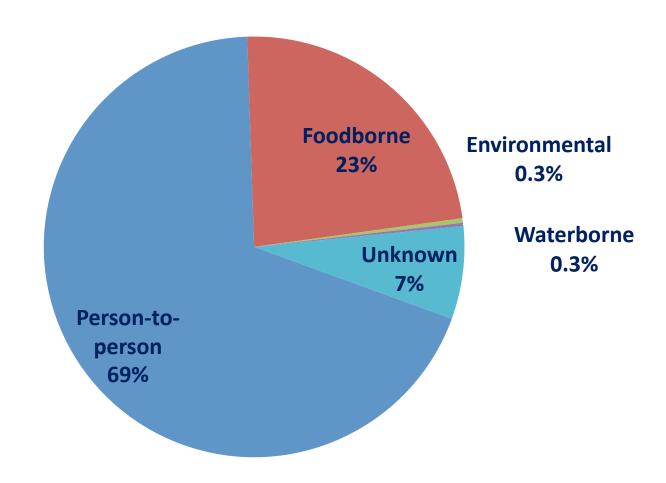
2009 to 2010

Global prevalence of norovirus among cases of AGE

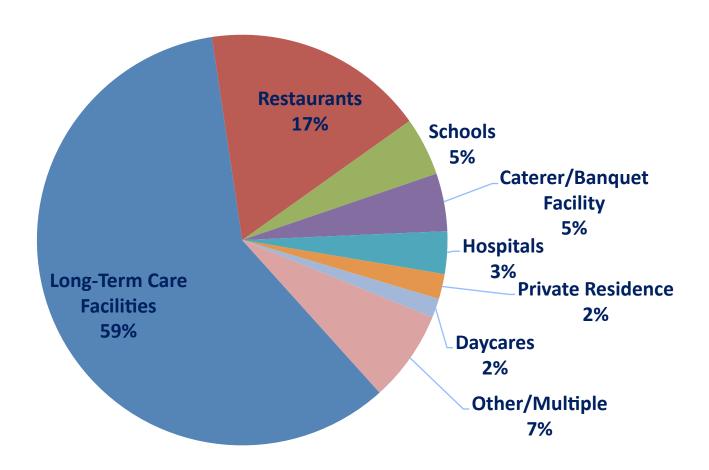

Ahmed, Hall, Robinson, Verhoef, Premkumar, Parashar, Koopmans, Lopman, Lancet Infectious Diseases, 2014

Global Burden of Norovirus

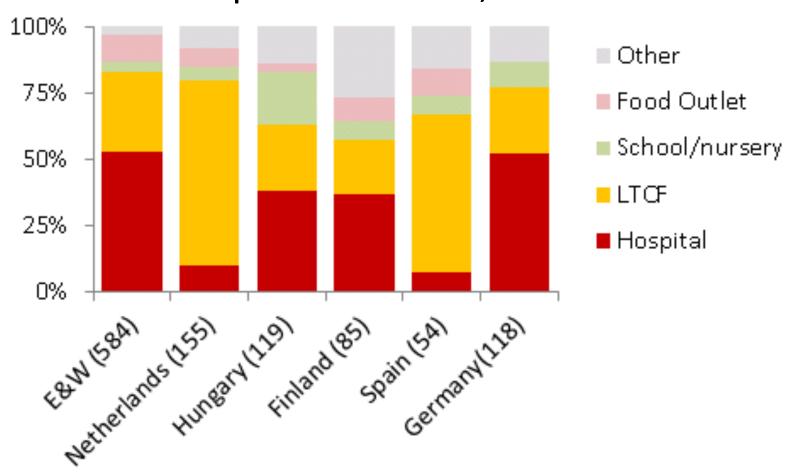
- WHO Foodborne Disease Burden Epidemiology Group (FERG)
- Global and regional age-stratified estimates of deaths, and DALYs
- Norovirus ranking as foodborne hazard:
 - #1 cause of foodborne illness
 - #4 cause of foodborne deaths
 - #5 cause of foodborne DALYs
- Total norovirus burden annually:
 - 685 million cases; 200 million in children <5
 - 212,489 deaths; 54,214 in children <5</p>
 - 85% of illnesses and 99% of deaths occur in developing countries
 - \$60 billion in direct health system costs and productivity loses



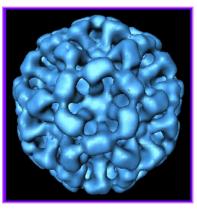
Outbreaks in health care facilities



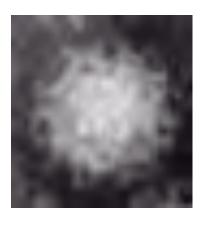
http://www.cdc.gov/norovirus/trends-outbreaks.html


Transmission Mode of Norovirus Outbreaks, NORS, 2009-2012 (N=4,318)

Setting of Norovirus Outbreaks, NORS, 2009-2012 (N=3,243)



Setting of 1115 Norovirus Outbreaks in Six European Counties, 2002



Virology and Clinical Disease

Noroviruses

- Caliciviridae
- Non-enveloped small round structured viruses (28-35 nm diameter)
- Genome: + sense ssRNA ~ 7.5k
- Endemic in children

- The most common cause of outbreaks of gastroenteritis in the UK
- Burden to health service seasonal appearance cost: £115m/year in nosocomial outbreaks (Lopman et al 2005)

Norovirus Clinical manifestations

Nausea - 79%

Vomiting - 69%

Diarrhoea - 66%

Fever - 37%

Chills - 32%

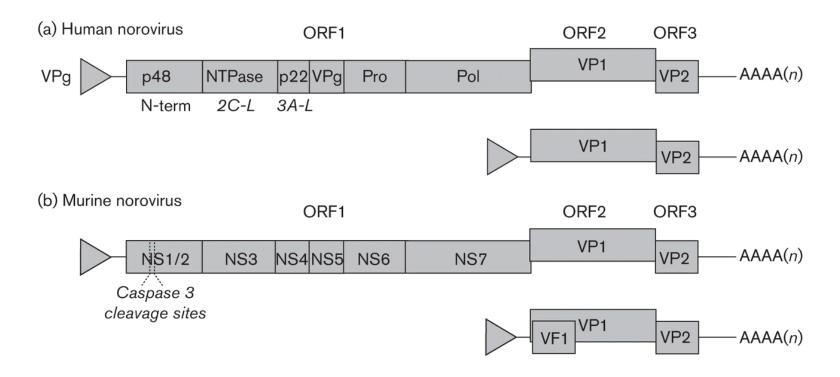
Abdominal cramps - 30%

Myalgias -26%

Headache - 22%

Sore throat - 18%

Incubation period: 10-50h

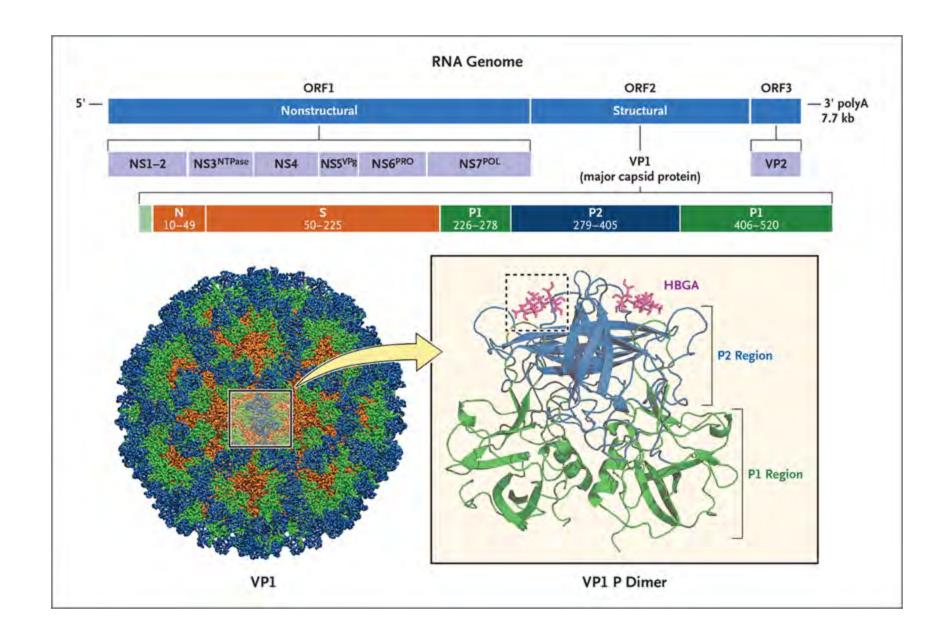

Duration of symptoms: 24-48h

High attack rate

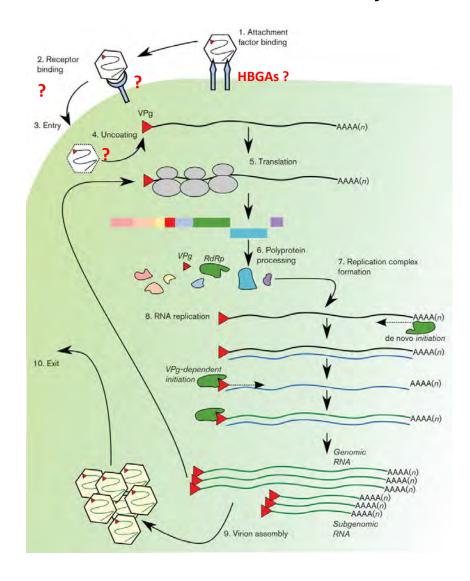
Low infectious dose (10 virus particles)

Asymptomatic infections are common

NoV Genome Organisation

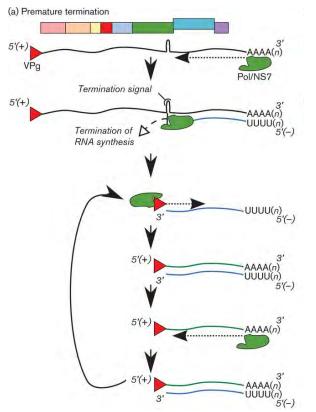


The HuNV genome is covalently attached to VPg (NS5) with a poly(A) tail and is divided into three ORFs, common to all noroviruses. ORF1 is translated as a polyprotein, which is cleaved by the viral protease NS6 to produce the NS proteins. ORF2 and ORF3 are translated from a subgenomic RNA.

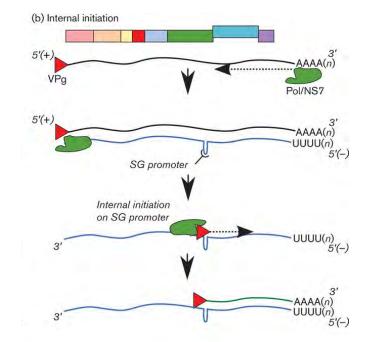

MNV has an additional alternative fourth ORF. ORF4 overlaps with ORF2 and is also translated primarily from the subgenomic RNA into the virulence factor 1 (VF1) protein.

Nomenclature for HuNV and MNV proteins and their functions

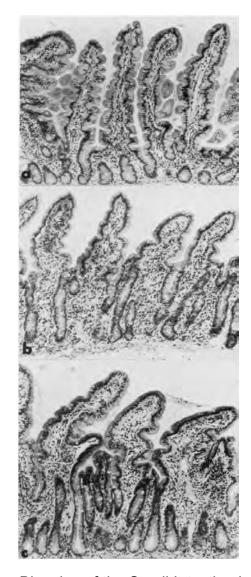
MNV	HuNV*	Function
NS1/2	p48 (N-term)	Replication complex formation, contributes to persistence in MNV infections
NS3	NTPase (2C-like)	RNA helicase/NTPase
NS4	p22 (3A-like)	Replication complex formation
NS5	VPg	Genome-linked protein involved in translation and replication
NS6	Pro (3C-like)	Protease
NS7	Pol/3Dpol	RdRp
VP1	VP1	Major capsid protein
VP2	VP2	Minor capsid protein
VF1	No equivalent	Virulence factor


Outline of the norovirus life cycle.

Thorne L G, and Goodfellow I G J Gen Virol 2014;95:278-291


- (1) HuNV and MNV are thought to attach to the cell surface using various carbohydrate attachment factors. This is not sufficient to mediate entry and binding to an unidentified protein receptor is thought to be required.
- (2). Entry (3) and uncoating (4) proceed through as-yet-undefined pathways.
- (5) The viral genome is translated, through interactions with VPg at the 5 end of the genome (red triangle) and the cellular translation machinery.
- (6) The ORF1 polyprotein is co- and post-translationally cleaved by the viral protease NS6.
- (7) The replication complex is formed by recruitment of cellular membranes to the perinuclear region of the cell (not shown), through interactions in part with NS1/2 and NS4.
- (8) Genome replication occurs via a negative-strand intermediate, and genomic and subgenomic RNA are generated by the viral RdRp (NS7), using both *de novo* and VPg-dependent mechanisms of RNA synthesis.
- (9) The replicated genomes are translated (within the replication complex) or packaged into the capsid, VP1, for virion assembly and exit (10).

Mechanisms of norovirus subgenomic RNA synthesis



- I. The presence of a termination signal upstream of the VP1-coding region results in premature termination during negative-sense RNA synthesis by the viral RNA polymerase (NS7/Pol).
- II. The resulting negative-sense subgenomic RNA (blue) is then used for VPg-dependent RNA synthesis to produce a subgenomic dsRNA.
- III. The newly synthesized positive-sense 'daughter' subgenomic RNA (green) can then be used as a template for the synthesis of negative-sense subgenomic RNA. These in turn function as templates for additional rounds of 'daughter' subgenomic RNA synthesis.

- I. (b) The internal initiation model relies on the VPgdependent subgenomic RNA synthesis occurring on a promoter sequence present downstream of the VP1-coding region on the negative-sense RNA
- II. The viral RNA polymerase initiates RNA synthesis, presumably in a VPg-dependent manner, to produce new 'daughter' VPg-linked subgenomic RNA (green), which may in turn function as a template for additional rounds of subgenomic RNA synthesis as in the premature termination model.

Pathogenesis

The pathological basis of human norovirus-induced diarrhoea is not well understood.

Norovirus infection leads histopathological changes in the small intestine including broadening and blunting of the villi.

There is transient malabsorption of d-xylose, fat, and lactose, which could be related to shortened microvilli and decreased brush border enzyme activity

Intestinal inflammation is modest, with the exception of a significant increase in intraepithelial cytotoxic T cells reported in one small cohort of naturally infected subjects

The available data suggest that human norovirus-induced diarrhoea is not caused by structural damage of the intestinal wall but instead by alterations of secretory and/or absorptive processes.

Human norovirus infections are typified by a high incidence of vomiting episodes but the underlying pathophysiology of this manifestation is also undefined. One study of infected volunteers noted a marked delay in gastric emptying, possibly due to abnormal gastric motor function.

Biopsies of the Small Intestine before and after Oral Ingestion of Norwalk Agent (Hematoxylin and Eosin Stain X100).

- (a) Before ingestion villi are tall, and the cellularity of the lamina propria is normal.
- (b) Two days after ingestion the villi are shortened, the crypts are hypertrophied and contain increased numbers of mitoses, and the cellularity of the lamina propria is increased.
- (c) Six days after ingestion shortened villi, hypertrophied crypts and increased mitoses persist.

Characteristics of NoV animal models

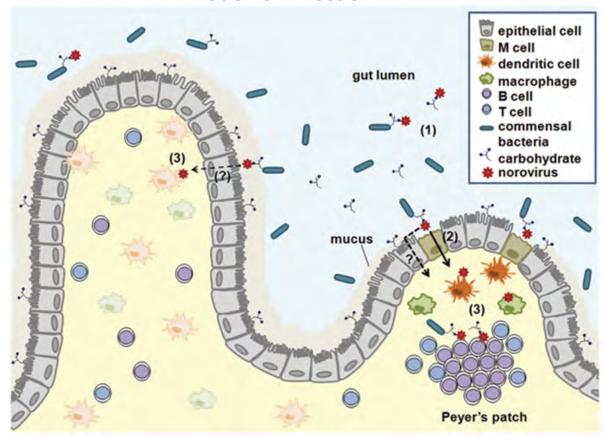
Host	Virus Strain	Route	In Vivo Viral Antigen	Intestinal Disease	Fecal Shedding (dpi)	Viremia	Stomach Tropism	Small Intestinal Tropism	Large Intestinal Tropism	MLN Tropism	Peripher al Tissue Tropism
Humans	HuNo Vs	peroral	intestinal monocytes, lamina propria cells	severe diarrhea and vomiting	yes (widely variable)	+/?	N/A	+	N/A	N/A	N/A
Chimpanzees	HuNoV GI.1	peroral; intraveno us	intestinal DC and B cells	asympto matic	+ (2-42)	_	N/A	+	N/A	N/A	+
Gnotobiotic pigs	HuNoV GII.4	peroral	IECs	mild diarrhea	+ (1-4)	+	N/A	+	N/A	N/A	N/A
Gnotobiotic calves	HuNoV GII.4	peroral	IECs and intestinal M?b	mild diarrhea	+ (1-6)	+	N/A	+	N/A	N/A	N/A
Balb/c RAG/γc?/? mice	HuNoV GII.4 pool		M?b in spleen and liver	asympto matic	_	N/A	+	+	+	+	+
Wild-type mice	MuNoVs	peroral	intestinal M? and DCb	asympto matic	+ (1-?56)	N/A	+/?	+	+	+	+/?
Interferon?/? mice	MuNoVs	peroral	M? and DCb; IECs	severe diarrhea	+	+	+	+	+	+	+
Malnourishe d mice	MuNoVs	peroral	N/A	modest weight loss	+ (1-?50)	N/A	+	+	+	+	+

NoVs Infect Innate Immune Cells

- Upon crossing the epithelial barrier, viral particles next encounter immune cells in the lamina propria and lymphoid follicles, including Peyer's patches, although intestinal epithelial cells are also infected in case of bovine NoV.
- MuNoV replicates in antigen-presenting dendritic cells and macrophages in vitro in a lytic cycle. In vivo, MuNoV antigen is detectable in cells morphologically resembling dendritic cells and macrophages and in cells positive for the macrophage marker F4/80.
- HuNoV appears to target intestinal immune cells in vivo consistent with the tropism of MuNoV: Viral antigen was detected in intestinal lamina propria cells from a biopsy sample of a HuNoV-infected person and inactivated HuNoV particles bind to lamina propria cells in human intestinal tissue sections.

NoVs Infect Adaptive Immune Cells In Vitro.

 In addition to macrophages and dendritic cells, B cells were recently identified as targets of NoV infection


Enteric Bacteria Serve as a Co-Factor for NoV Infection:

- Both HuNoV and MuNoV productively infect B cell lines in vitro, establishing the first cell culture system for HuNoV.
- B cell infection appears to be distinct from macrophage or dendritic cell infection in that no cytopathic effect is observed in infected cultures.
- Enteric bacteria can enhance viral infections (eg poliovirus, reovirus, and mouse mammary tumor virus infections are reduced in antibiotic-treated or germ-free mice).
- Antibiotic treatment of mice results in a significant reduction in MuNoV yield in the intestine when compared to untreated mice.
- Thus, commensal bacteria can stimulate MuNoV infections in vivo and may influence the immune response to viral infection. Although enteric bacteria are not required for MuNoV infection in vitro, they significantly enhance HuNoV infection of B cells in vitro.

Potential mechanism(s) of bacterial enhancement of enteric virus infection

- Binding to bacterial lipopolysaccharide (LPS) is one mechanism (eg Polio) but LPS does not enhance HuNoV infection of B cells in vitro.
- Instead, HBGA-expressing bacteria and free HBGA stimulate HuNoV infection of B cells, while non-HBGA-expressing bacteria do not:
- HBGAs are neutral carbohydrates found on proteins or lipids that are bound by individual HuNoV strains and their expression correlates with a person's susceptibility to infection. However, expression of appropriate HBGAs on enterocytes in culture does not mediate infection.
- Some pathogenic and commensal enteric bacteria also express carbohydrates indistinguishable from human HBGAs, and HuNoV particles bind to HBGA-expressing bacteria. Interaction of HuNoV with free or bacteria-bound HBGAs enhances attachment to, and infection of, B cells (MuNoV binds carbohydrates such as sialic acids which are abundant on the surface of enteric bacteria)
- Bacteria may also play additional roles in vivo by enhancing the transcytosis of NoVs across the
 intestinal epithelium. While HuNoV and MuNoV can be transcytosed across polarized cells in
 the absence of bacteria in vitrothere are additional physical barriers (e.g., a thick mucus lining)
 impeding their access to the epithelium in the complex environment of the intestinal lumen.
- To overcome such physical barriers, NoVs may bind to motile bacteria that can traverse the mucus layer. Conversely, it is possible that NoVs actively drive transcytosis of commensal bacteria.

Model for Infection

- (1) NoVs bind carbohydrates expressed on enterocytes and secreted into the gut lumen. Enteric bacteria can express similar carbohydrates. NoVs may bind to such carbohydrates in any of these contexts.
- (2) NoVs are transcytosed across the intestinal epithelium via M cells and additional as-yet-to-be-identified pathways.
- (3) Following transcytosis, NoVs infect dendritic cells, macrophages, and B cells. Depending on the species, infection can occur in the presence or absence of carbohydrates. Free carbohydrates or bacterially expressed carbohydrates may be cotranscytosed with the virus. Immune cell infection and putative concomitant viral-bacterial antigen presentation during NoV infections could have significant consequences on the nature and magnitude of antiviral immune responses.

Plos Pathogens Volume: 11 Issue: 2 (2015-02-01) ISSN: 1553-7366

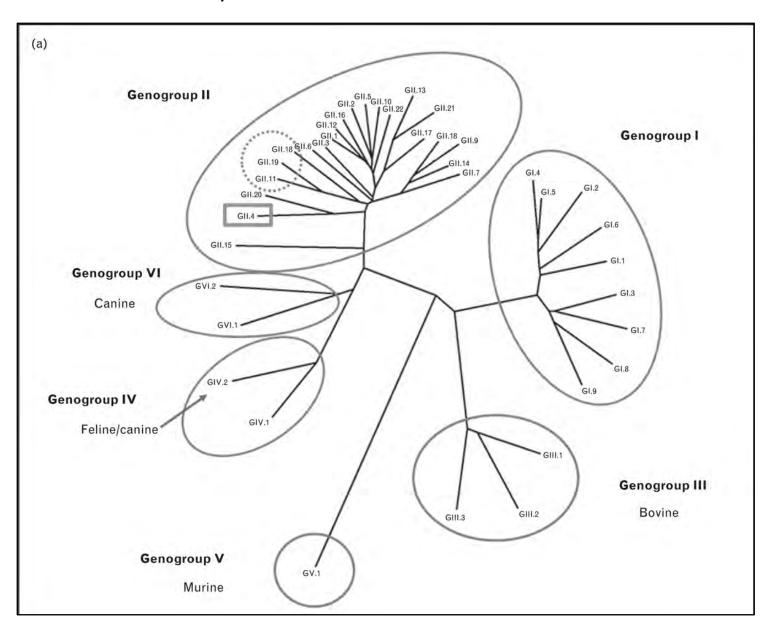
INFECTIOUS DISEASE

Replication of human noroviruses in stem cell-derived human enteroids

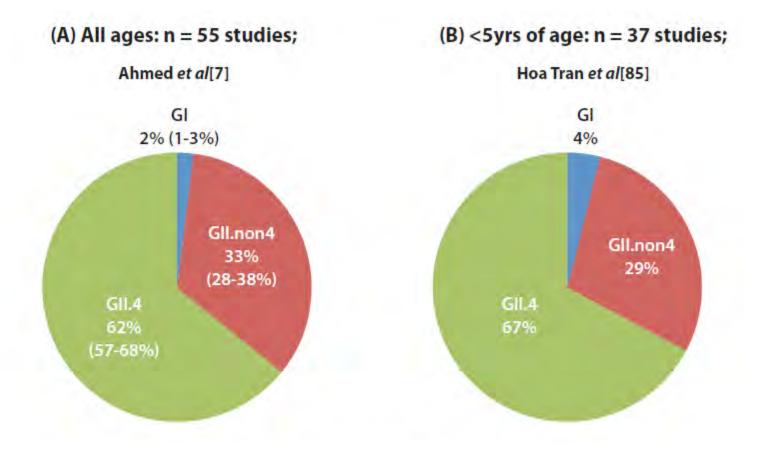
Khalil Ettayebi, ^{1*} Sue E. Crawford, ^{1*} Kosuke Murakami, ^{1*} James R. Broughman, ¹ Umesh Karandikar, ¹ Victoria R. Tenge, ¹ Frederick H. Neill, ¹ Sarah E. Blutt, ¹ Xi-Lei Zeng, ¹ Lin Qu, ¹ Baijun Kou, ¹ Antone R. Opekun, ^{2,3,4} Douglas Burrin, ^{3,4} David Y. Graham, ^{1,2,5} Sasirekha Ramani, ¹ Robert L. Atmar, ^{1,2} Mary K. Estes^{1,2}†

The major barrier to research and development of effective interventions for human noroviruses (HuNoVs) has been the lack of a robust and reproducible in vitro cultivation system. HuNoVs are the leading cause of gastroenteritis worldwide. We report the successful cultivation of multiple HuNoV strains in enterocytes in stem cell-derived, nontransformed human intestinal enteroid monolayer cultures. Bile, a critical factor of the intestinal milieu, is required for strain-dependent HuNoV replication. Lack of appropriate histoblood group antigen expression in intestinal cells restricts virus replication, and infectivity is abrogated by inactivation (e.g., irradiation, heating) and serum neutralization. This culture system recapitulates the human intestinal epithelium, permits human host-pathogen studies of previously noncultivatable pathogens, and allows the assessment of methods to prevent and treat HuNoV infections.

A new in vitro tool for NoV replications and immune/vaccine studies


- This is a biologically relevant model
- The model can be targeted to represent specific populations and genetic backgrounds
- Secretor/non-secretor status driven susceptibility recapitulates epidemiological data
- Provides a tool to study neutralising antibody responses as a correlate for protection

Characteristics of Norovirus Gastroenteritis in Immunocompetent versus Immunocompromised Hosts.


Characteristic	Immunocompetent Hosts	Immunocompromised Hosts
Prevalence	Leading cause of gastroenteritis worldwide	Not established; estimated at about 17 to 18%
Seasonality	Peak in winter months	Year-round Year-round
Clinical features	Acute onset, duration of 24 to 48 hr	Acute onset, indefinite duration
Viral shedding	20 to 40 days	Weeks to years
Level of virus	10 ⁸ to 10 ⁹ genome copies per gram of stool	10 ^s to 10 ⁸ genome copies per gram of stool, depending on level of immunosuppressive therapy
Evolution of virus in host	Small number of stable variants	Markedly diverse variants
Tissue tropism	Small intestine	Small intestine
Complications	Dehydration	Dehydration, malnutrition, dysfunction of intestinal barrier
Treatment	Infection is usually self-limiting; rehydration, if needed	No virus-specific treatment is available; supportive care, adjustment of immunosuppressive therapy
Prognosis	Usually excellent, but the infection can be life-threatening	Poor to excellent; chronic infection is common

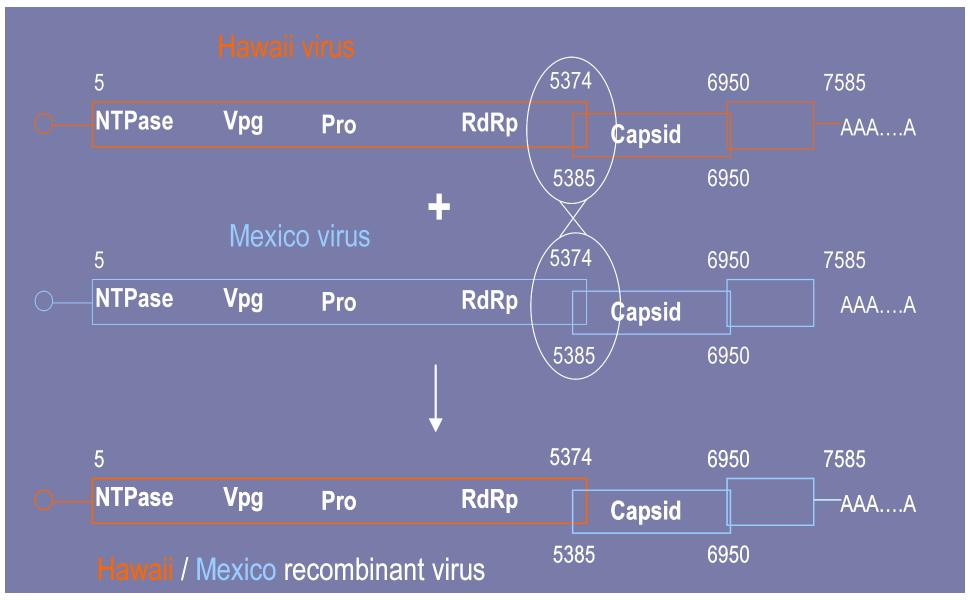
Epidemiology

Norovirus Diversity and Classification

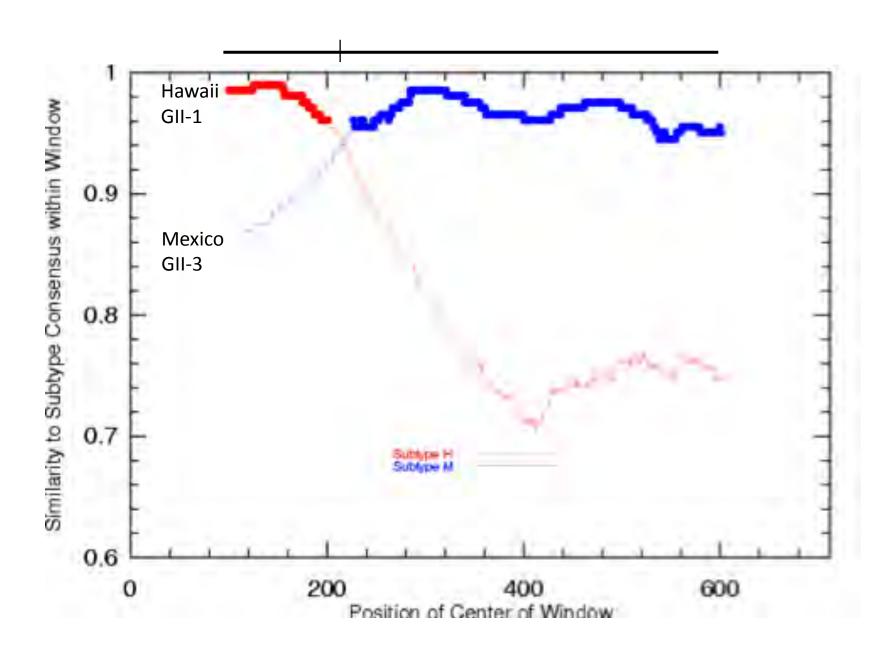
HuNoV Genotype distribution

Mechanisms generating diversity among noroviruses

Genetic Recombination


Requirements

- co-infection of a single cell
- relatedness of parental strains


Noroviruses

- endemic co-circulation of genotypes
- faecal-oral route of transmission
- low infectious dose
 - waterborne and foodborne outbreaks
 - environmental survival
- limited heterotypic protection
- absence of long term immunity

Norovirus recombination: Mixing of genomes of two viruses

Hawaii/Mexico Recombinant norovirus

Possible recombinant strains have been detected throughout Europe

D 1	Derivation	0 11	0	V
Polymerase	POL Lineage	Capsid	Country	Year
Southampton		Hesse 3	GB	1995
Hawaii [.]	1	Bristol	DE	1999
Hawaii	Ш	Toronto 24	FR	1998
Hawaii	Ш	Toronto 24	GB	2001
Hawaii	1	Hillingdon	GB	2002
Hawaii	II	Hillingdon	NL	2000
Harrow	II	Bristol	FR	2001
Harrow	I	Hawaii	DE	2001
Harrow	I	Hawaii	FR	2001
Harrow	I	Hawaii	GB	2001
Harrow	I	Hawaii	NL	2001
Harrow	I	Toronto 24	FR	2001
Harrow	1	Toronto 24	GB	2001
Harrow	I	Toronto 24	NL	2000
Harrow	II	Toronto 24	DE	2001
Harrow	II	Toronto 24	FR	2000
Harrow	II	Toronto 24	GB	2001
Bristol	II	Desert Shield	FR	2002
Leeds		Seacroft	GB	1999
Leeds		Amsterdam	NL	1999
Leeds		Seacroft	SE	1999
Leeds		Seacroft	FR	1999
Amsterdam	I	Seacroft	FI	1999

Recombination unlikely to have a major impact:

It occurs among co-circulating human viruses.

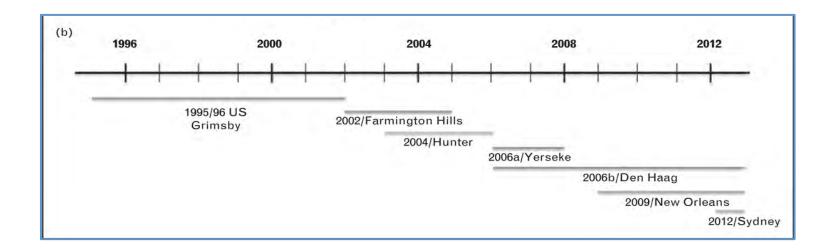
No evidence of transmission between species

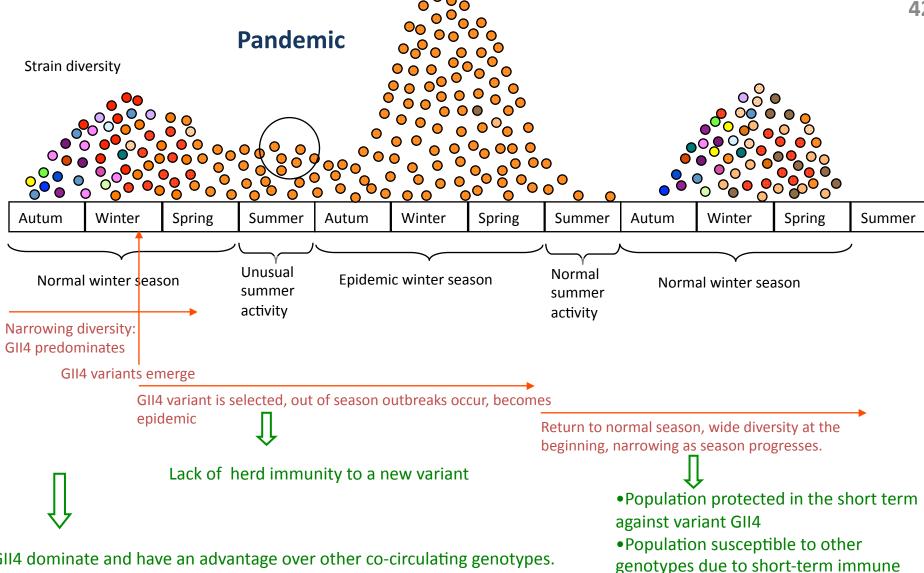
No "new" antigens presented to the population

Mechanisms generating diversity among noroviruses

Genetic drift

The error prone nature of RNA replication leads to the accumulation of point mutations:


- Emergence of variant strains
- Emergence of antibody escape mutant strains


Mechanisms generating diversity among noroviruses

Genetic drift

The error prone nature of RNA replication leads to the accumulation of point mutations:

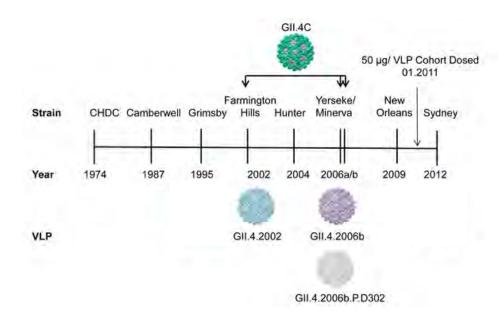
- Emergence of variant strains
- Emergence of antibody escape mutant strains

protection.

GII4 dominate and have an advantage over other co-circulating genotypes.

- replicative advantage
- greater transmissibility associated with a lower infectious dose
- larger proportion of the population susceptible through inherited genetic factors,
- better survival of the virus in the environment,
- a mechanism that allows the virus to evade immune surveillance to some degree.

Vaccines

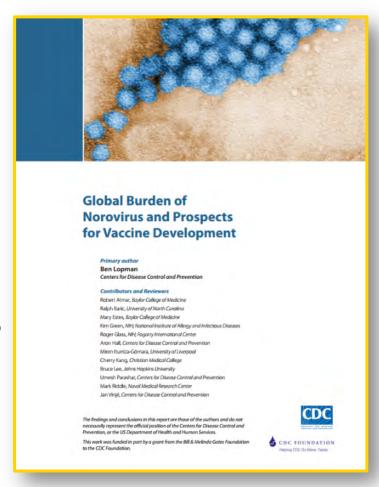

Norovirus vaccines showing promise

- A number of products being developed
 - virus-like particles (VLPs)
- The products with human efficacy data are being developed by Takeda Pharmaceuticals.
- Intranasal and intramuscular formulations tested in challenge studies
 - 47% (95% CI, 15%–67%) VE against norovirus gastroenteritis

Takeda Bivalent Norovirus VLP Vaccine

- GI.1
- GII.4 consensus
- Adjuvants
 - Alum
 - Aluminum hydroxide Al(OH)₃
 - MPL
 - 3-O-desacyl-4' monophosphoryl lipid A

Takeda


IM bivalent (GI.1, GII.4) vaccine followed by challenge Per Protocol Efficacy Analysis

Illness Severity Infected	Vaccine (N=50)	Placebo (N=48)	% Reduction (95% CI)
Any	20.0%	37.5%	47% (-4%, 73%)
Mod-severe	6.0%	18.8%	68% (-11%, 91%)
Severe	0%	8.3%	100%

Challenges for a norovirus vaccine

- 1. Role of prior <u>infection history</u>?
- 2. <u>Duration</u> of protection?
- 3. Protection against multiple genotypes?
- 4. Need to be updated to keep up with <u>viral evolution</u>?
- 5. Need for different <u>vaccine</u> <u>formulation</u> for certain groups?
- 6. Variation in human genetic susceptibility?

Prevention and Control General

- Rapid reporting, response, and investigation
 - Identify mode of transmission and source of contamination
 - Collect appropriate specimens
- Promote appropriate hand hygiene
 - Wash with soap and water ≥ 20 seconds
 - Alcohol-based hand sanitizers?
- Prompt and thorough disinfection
 - Bleach solution for contaminated surfaces
 - Other EPA-approved disinfectants?
- Manage and exclude ill persons
 - ≥ 24-72 hrs after symptom resolution
 - Accommodating sick pay/leave policies for staff

Prevention and Control In healthcare settings

- Patient cohorting
 - Place patients with norovirus gastroenteritis on Contact Precautions for a minimum of 48 hours after the resolution of symptoms
- Personal Protective Equipment (PPE)
 - Gowns and gloves upon entry
- Patient Transfer and Ward Closure
 - Consider the closure of wards to new admissions or transfers
- Environmental Cleaning
 - Consider changing privacy curtains routinely and upon patient discharge or transfer.
- Rehydration therapy
 - Particular attention to children, elderly or otherwise vulnerable

SEARCH

A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Norovirus

Norovirus is a very contagious virus that can infect anyone. You can get it from an infected person, contaminated food or water, or by touching contaminated surfaces. The virus causes your stomach or intestines or both to get inflamed. This leads you to have stomach pain, nausea, and diarrhea and to throw up. These symptoms can be serious for some people, especially young children and older adults... more

Norovirus Topics

About Norovirus

Overview about the virus, how it spreads, symptoms, treatment...

For Food Handlers

Information about how norovirus spreads through contaminated food and water...

For Health Care Providers

Clinical features, transmission, diagnosis, disease burden, treatment...

For Public Health Professionals

Information about burden of norovirus illness and outbreaks, surveillance & reporting, investigations...

Trends and Outbreaks

some simple tips...

Information about how common norovirus illness is, who gets infected, and when...

Preventing Norovirus Infection

from norovirus infection by following

You can help protect yourself and others

Laboratory Testing

Types of laboratory testing done to diagnose norovirus infection, guidelines, reporting systems...

Resources & References

Scientific articles and educational materials related to norovirus...

Protect Yourself from Norovirus!

Wash your hands often

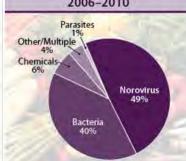
Rinse fruits & vegetables

Cook shellfish thoroughly

Clean surfaces & wash laundry

When you're sick, don't prepare food or care for others

Share this widget | More info www.cdc.gov/Norovirus



Many Names, Same Symptoms

You may hear norovirus illness called "food poisoning" or "stomach flu." It is true that food poisoning can be caused by noroviruses. But, other germs and chemicals can also cause food poisoning.

Norovirus illness is not related to the flu, which is a respiratory illness caused by influenza virus.

Known Causes of Foodborne Illness Outbreaks, U.S., 2006–2010

Symptoms

The most common symptoms are:

- diarrhea
- throwing up
- nausea
- stomach pain

Other symptoms include:

- fever
- headache

Email page link

Print page

Contact Us:

Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333

800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 Contact CDC-INFO

NOROVIRUS

What healthcare providers should know

What is norovirus?

A virus that can cause severe and sudden gastroenteritis (i.e., inflammation of the lining of the stomach and intestines). Both healthy and compromised persons can be affected.

What are the symptoms?

Nausea, vomiting, diarrhea, and some stomach cramping

Is it contagious?

Norovirus is very easily transmitted through contaminated hands, equipment/surfaces, or food/water

What can I do to prevent norovirus?

Always perform appropriate hand hygiene, particularly after contact with fecal material or after contact with anyone suspected /confirmed with norovirus. Wear gloves when caring for symptomatic patients.

If you have symptoms consistent with norovirus infection, stay home for a *minimum* of 48 hrs after symptom resolution

If an outbreak is suspected contact Infection Prevention and Control

For more information, visit www.cdc.gov

CS# 216887-A NorovirusPosto

Norovirus prevention toolkit

http://www.cdc.gov/HAI/organisms/norovirus.html#a4

Guidelines

- Updated Norovirus Outbreak Management and Disease Prevention Guidelines
 - MMWR Recommendations and Reports
 - http://www.cdc.gov/mmwr/preview/mmwrhtml/rr6003a1.htm
- Guideline for the Prevention and Control of Norovirus Gastroenteritis Outbreaks in Healthcare Settings
 - Healthcare Infection Control Practices Advisory Committee (HICPAC)
 - http://www.cdc.gov/hicpac/norovirus/002_norovirus-toc.html

November 14 (FREE ... WHO Teleclass – Europe)

NEW RECOMMENDATIONS FROM THE WORLD HEALTH ORGANIZATION TO FIGHT ANTIMICROBIAL RESISTANCE

Dr. Benedetta Allegranzi, World Health Organization Sponsored by the World Health Organization (www.who.int/gpsc.en)

November 21 (FREE ... Broadcast live from the ACIPC conference, Melbourne)

- ... ACPIC CONFERENCE PATRON ADDRESS
- ... WHY IS IMPROVING INFECTION PREVENTION AND CONTROL SO HARD?
- ... INFLUENCING DECISION MAKERS

Teleclass broadcast sponsored by Schulke Australia (www.schulke.com.au)

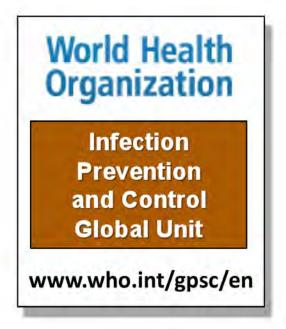
November 22 (FREE ... Broadcast live from the ACIPC conference, Melbourne)

- ... MOVING FROM EVIDENCE TO INNOVATIONS IN PRACTICE
- ... LATEST INNOVATIONS IN INFECTION PREVENTION AND CONTROL
- ... AN UPDATE FROM THE AUSTRALIAN COMMISSION ON SAFETY AND **QUALITY IN HEALTH CARE**
- ... WHAT ARE THE ISSUES AROUND ANTIMICORIBIAL STEWARDSHIP IN AGED CARE?

Teleclass broadcast sponsored by Schulke Australia (www.schulke.com.au

www.webbertraining.com/schedulep1.php

TELECLASS EDUCATION YEARS


THANKS FOR YOUR SUPPORT

Thanks to Teleclass Education

PATRON SPONSORS

