Technologic Innovations to Prevent Catheter-Related Bloodstream Infection

> Mark E. Rupp, MD Professor & Chief, Infectious Diseases Director, Infection Control & Epidemiology University of Nebraska Medical Center

Hosted by Bruce Gamage Provincial Infection Control Network of British Columbia

www.webbertraining.com

April 6, 2017

### Nebraska





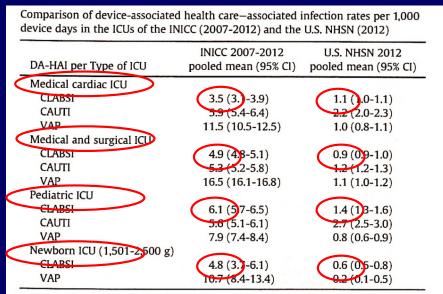






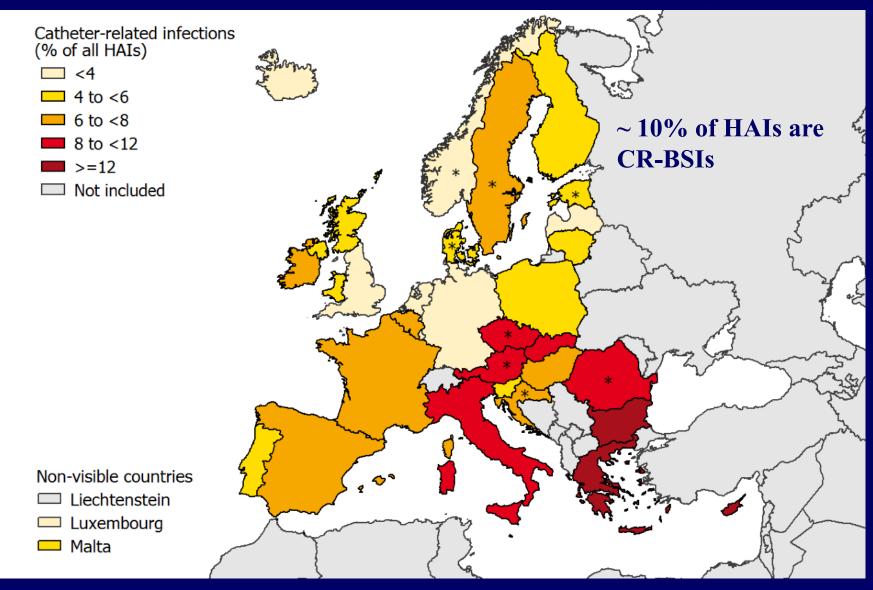
# **Clinical Significance of CLA-BSI**

- 78,000 central line-associated bloodstream infections (CLA-BSI) are estimated to occur yearly in United States hospitals and dialysis units.
- 2013 NHSN report from 4,567 US facilities, mean CLA-BSI rate in critical care units ranged from 0.0 – 3.0/1000 CVC d.
- CLA-BSI are associated with an estimated mortality rate of 12.3% and excess healthcare costs between \$7,288 and \$29,156 per episode.

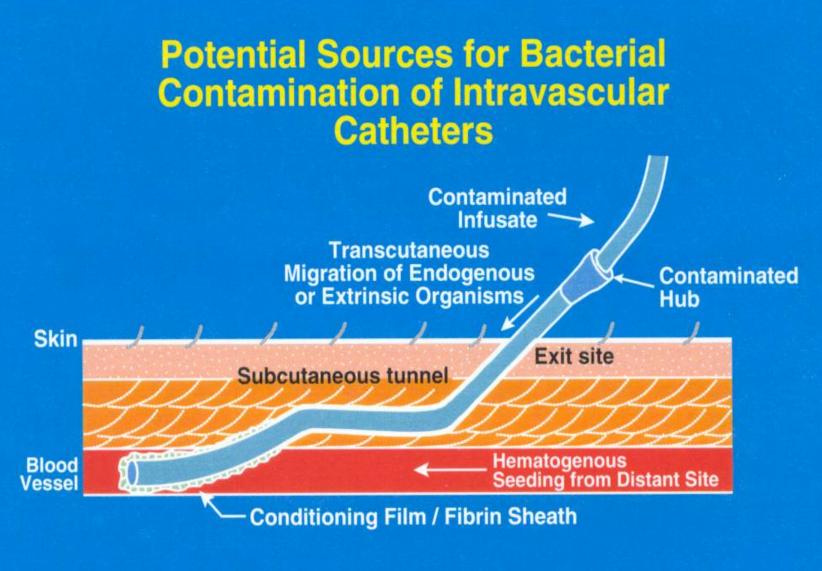



Srinivasan A, et al. MMWR 60: 2011; CDC NHSN 2013 Data Summary; Umscheid CA, et al. Infect Control Hosp Epidemiol. 2011; 32:101-114. Scott RD. Division of Healthcare Quality Promotion, CDC, 2009. International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module



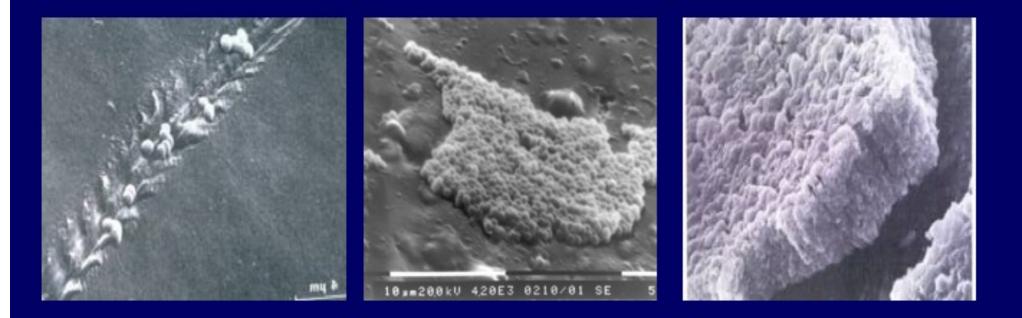

#### Rosenthal VD, et al. AJIC 2014

Countries Represented: Argentina, Bolivia, Brazil, Bulgaria, China, Colombia, Costa Rica, Cuba, Cyprus, Dominican Republic, Ecuador, Egypt, El Salvador, Greece, Honduras, India, Iran, Saudi Arabia, Kosovo, Kuwait, Lebanon, Lithuania, Macedonia, Malaysia, Mexico, Mongolia, Morocco, Pakistan, Panama, Peru, Philippines, Poland, Puerto Rico, Romania, Russia, Serbia, Slovakia, Sudan, Thailand, Tunisia, turkey, United Arab Emirates, Uruguay, Venezuela, Vietnam




*CAUTI*, catheter-associated urinary tract infection; *CI*, confidence interval; *CLABSI*, central line—associated bloodstream infection; *DA-HAI*, device-associated health-care-associated infection; *ICU*, intensive care unit; *INICC*, International Nosocomial Infection Control Consortium; *NHSN*, National Healthcare Safety Network; *VAP*, ventilator-associated pneumonia.

# Relative frequency of CR-BSI as a total of all HAIs by country (ECDC PPS 2011-2012)




### Pathogenesis of CVC-Associated BSI



Rupp & Archer, Staphylococci in Human Disease, 1997 6

### Pathogenesis of CVC-Associated BSI



Mature biofilm-associated infection with diverse population of cells including "persistor cells" is very difficult to eradicate with catheter in place

# **Prevention of CR-BSI**

# Practice Associated Interventions







# **Practice Associated Interventions**

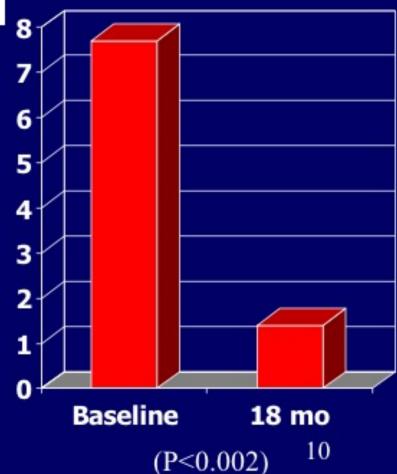
Education & Training Staffing Levels Insertion Procedures Full Sterile Barriers & Checklist Post Insertion Care Dressing Integrity Aseptic Access Technique (scrub the hub) Discontinuing unneeded catheters

### The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

**DECEMBER 28, 2006** 

VOL. 355 NO. 26


#### An Intervention to Decrease Catheter-Related Bloodstream Infections in the ICU

Peter Pronovost, M.D., Ph.D., Dale Needham, M.D., Ph.D., Sean Berenholtz, M.D., David Sinopoli, M.P.H., M.B.A., Haitao Chu, M.D., Ph.D., Sara Cosgrove, M.D., Bryan Sexton, Ph.D., Robert Hyzy, M.D., Robert Welsh, M.D., Gary Roth, M.D., Joseph Bander, M.D., John Kepros, M.D., and Christine Goeschel, R.N., M.P.A.

#### Intervention in 108 ICUs:

Daily Goals Sheet Hand Hygiene Full Sterile Barrier Precautions Chlorhexidine Antiseptic Avoidance of the Femoral Site Removal of CVCs asap

### Mean BSI/1000 CVC d



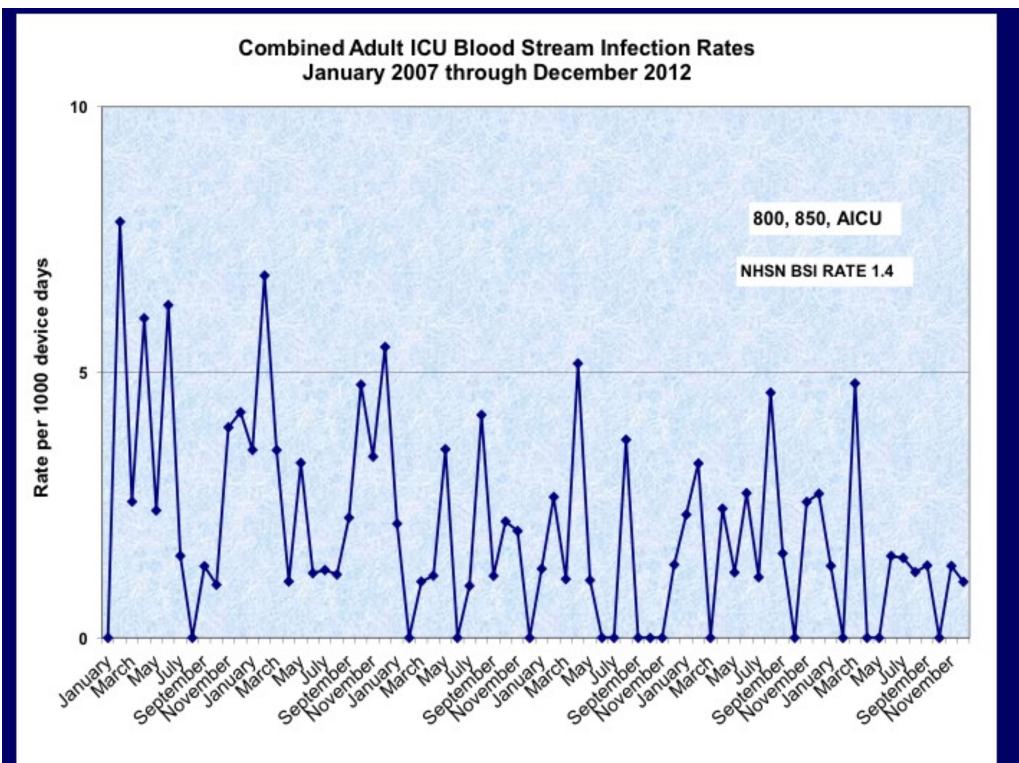
# Nebraska Medical Center CVC Insertion Kit



The Nebraska Medical Canter, 987400 Nebraska Medical Ce\*, Onada NE 68198-3400 Ph;402-339-4.

# Patient Information Sex 008 Patient Name Permale 005/1085 CVC Checklink Note signed 1 ,RN at 61/2/014 6:25 PM Autor RN Autor Filed 61/2/014 6:25 None 61/2/014 6:27 Cesigner PM Time PM Central Venous Cetheter Checklar 61/2/014 6:38 PM

Data of Birth 625/1995 Gander Venals

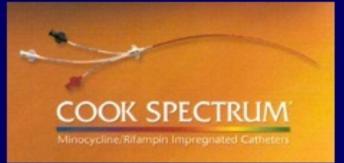

(and i Rouse 180 Alla)
 (and i Rouse 1 PRC) Insertion
 (and i Rouse 180
 (b) and the insertion in the second of parts
 (b) and the insertion is the insertion
 (b) and the insertion is the insertion
 (b) and the insertion
 (b) and
 (b

Comments (axtenuating circumstances, breaks in protocol, saturate for rewine) \_\_\_\_\_

Observer Signature Commission, AN 6:27 Per 612/2014

\* Responses in Bold/Red are required elements of the CLABG prevention bundle






# What if Practice Measures Aren't Working?????



# Prevention of CR-BSI Technologic Innovations











ARROWgard Blue PLUS' Central Venous Catheters









### Behavioral Change vs. Technology

"If you can choose between education and influencing human behavior or introduction of a gizmo, choose the gizmo everytime."

**Bob Weinstein** 

### Commercially Available Antimicrobial Central Venous Catheters

M/R



#### CHG/SS

ARROWg<sup>‡</sup>ard Blue PLUS<sup>®</sup> Central Venous Catheters



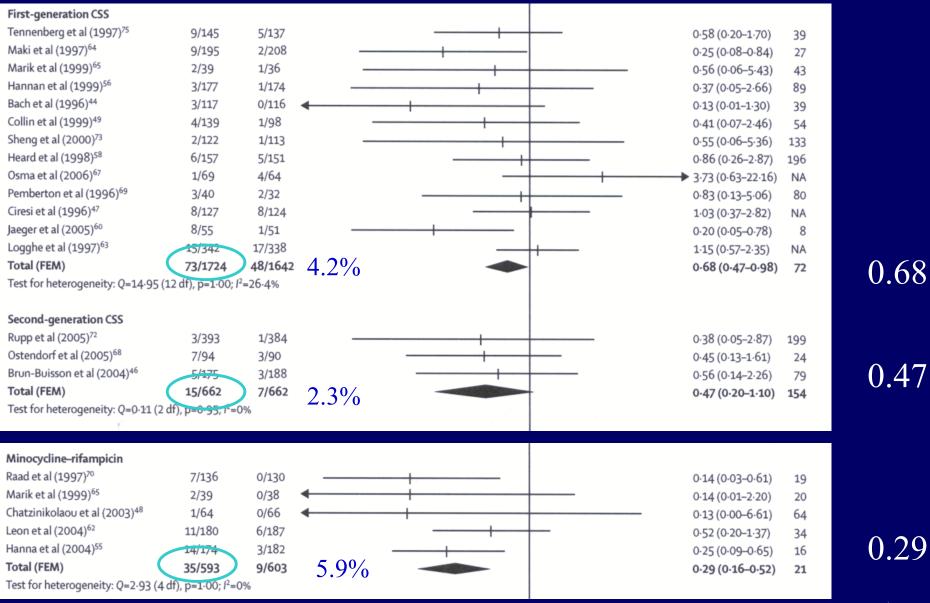
### COOK SPECTRUM

Minocycline/Rifampin Impregnated Catheters



Multistar Miconazole/Rifampin (Vygon)



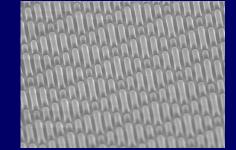



Silver/Platinum/ Carbon (Silver Iontophoretic; Vantex)

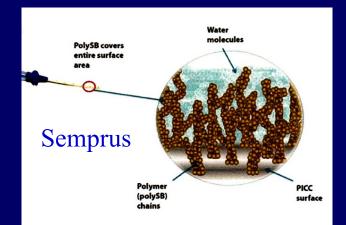


Hydrocath Assure (BD) Benzalkonium AMC Thromboshield (Edwards) Benzalkonium Heparin

### Do antimicrobial-coated catheters prevent BSI?




17


Casey AL, et al. Lancet ID, 2008

# Novel Antimicrobial Coatings & CVCs

- 5-Fluorouracil
- Rifampin-Miconazole
- Silver Nanoparticles
- Chlorhexidine/Minocycline/Rifampin
- Gentian violet/Chlorhexidine
- Surface Pattern (Sharklet)

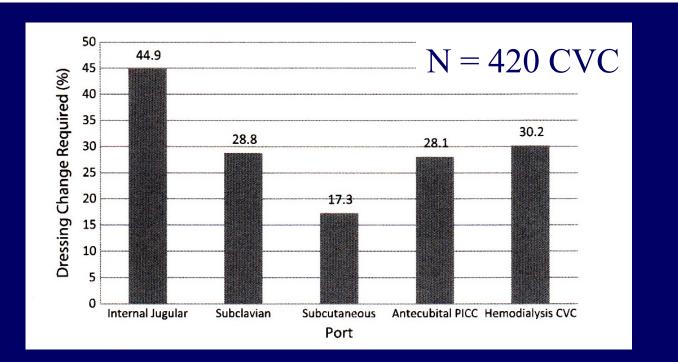


Polymeric sulfobetaine (polySB)Heated CVCs



# Preservation of Dressing Integrity Dressing disruption is a major risk factor for

### catheter-related infections


| Table 5. Association between dressing | g disruption and catheter colonization or infection (unadjusted and adjusted marginal Cox model) |
|---------------------------------------|--------------------------------------------------------------------------------------------------|
|---------------------------------------|--------------------------------------------------------------------------------------------------|

|                   | Catheter Colonization ≥10 <sup>3</sup><br>colony-forming units/mL |        | Catheter-Related<br>Bloodstream Infection |        | Major Catheter-Related<br>Infection |        |
|-------------------|-------------------------------------------------------------------|--------|-------------------------------------------|--------|-------------------------------------|--------|
|                   | HR (95% CI)                                                       | р      | HR (95% CI)                               | р      | HR (95% CI)                         | р      |
| Unadjusted        |                                                                   |        |                                           |        |                                     |        |
| First             | 1.64 (1.13-2.39)                                                  | .01    | 3.15 (0.67-14.79)                         | .15    | 2.66 (0.50-14.26)                   | .25    |
| Second disruption | 1.52 (1.14-2.04)                                                  | .005   | 5.18 (1.85-14.48)                         | .002   | 4.31 (1.39-13.41)                   | .012   |
| Final disruption  | 13.54 (10.17-18.04)                                               | <.0001 | 14.90 (6.40-34.64)                        | <.0001 | 13.41 (5.17-34.75)                  | <.0001 |
| Adjusted          |                                                                   |        |                                           |        | 10100 50 5 100                      | 22     |
| First disruption  | 1.30 (0.90-1.87)                                                  | .16    | 2.65 (0.67-10.56)                         | .17    | 1.94(0.50-7.48)                     | .33    |
| Second disruption | 1.16(0.87 - 1.55)                                                 | .33    | 4.49 (1.71-11.79)                         | .002   | 3.26 (1.18-9.02)                    | .023   |
| Final disruption* | 13.99 (9.88-19.82)                                                | <.0001 | 18.11 (5.66-57.88)                        | <.0001 | 12.51 (3.95-39.62)                  | <.000  |

 The number of dressing disruptions was related to increased risk of colonization and bloodstream infection (P<0.001)</li>

### Hospital-wide assessment of compliance with central venous catheter dressing recommendations

Mark E. Rupp MD<sup>a,b,\*</sup>, Kyle Cassling BA<sup>a</sup>, Hayley Faber BS<sup>a</sup>, Elizabeth Lyden MS<sup>c</sup>, Kate Tyner RN<sup>b</sup>, Nedra Marion RN<sup>b</sup>, Trevor Van Schooneveld MD<sup>a,b</sup>

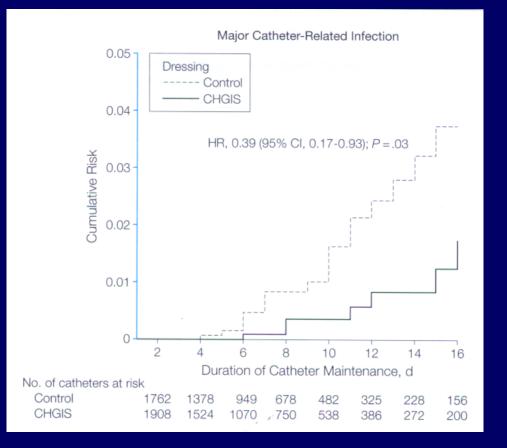


AJIC 2013

- On any given day approximately 31% of dressings were suboptimal and in need of change
- Reasons: 69% blood under dressing, 25.4% edge lift, 5.4% moisture under dressing

# Chlorhexidine Impregnated CVC Dressings



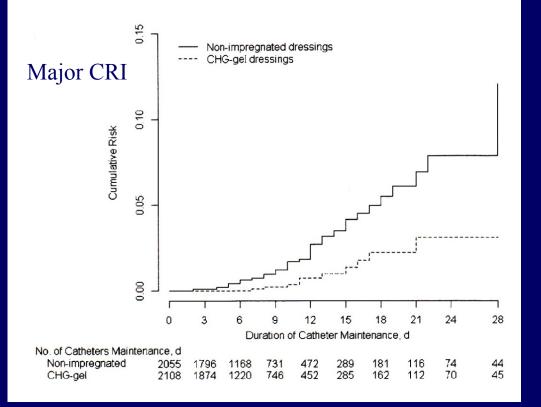

#### "Tegaderm CHG"

21

"Biopatch"

Chlorhexidine-Impregnated Sponges and Less Frequent Dressing Changes for Prevention of Catheter-Related Infections in Critically III Adults A Randomized Controlled Trial

#### Timsit, et al. JAMA, 2009




### CR-BSI: 1.4/1000 CVC d vs 0.4/1000 CVC d (P<0.005)</p>

- No significant difference between 3d and 7d dressing changes
- Full sterile barrier precautions used
- Site prep with 4% povidoneiodine soln & PI/Etoh

#### Randomized Controlled Trial of Chlorhexidine Dressing and Highly Adhesive Dressing for Preventing Catheter-related Infections in Critically III Adults

#### Timsit, et al. Crit Care Med, 2013



- CR-BSI: 1.3/1000 CVC d vs 0.5/1000 CVC d (P= 0.02)
- Major-CRI: 2.1/1000 CVC d vs 0.7/1000 CVC d (P=0.0006)
- Highly adhesive dressings decreased dressing detachment rate (71.9% vs 64.3%; P<0.0001) but increased rate of colonization HR 1.65, 95%CI 1.21-2.26, P =0.0016)

## Scrub the Hub!

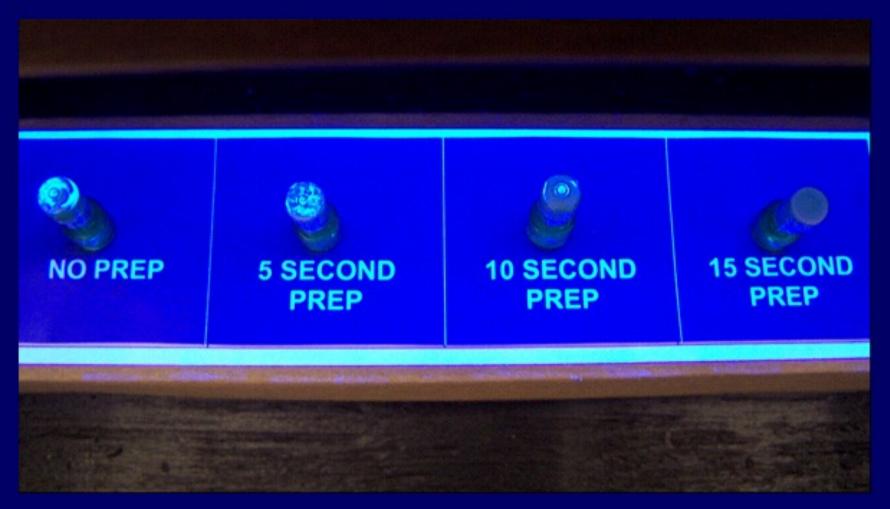


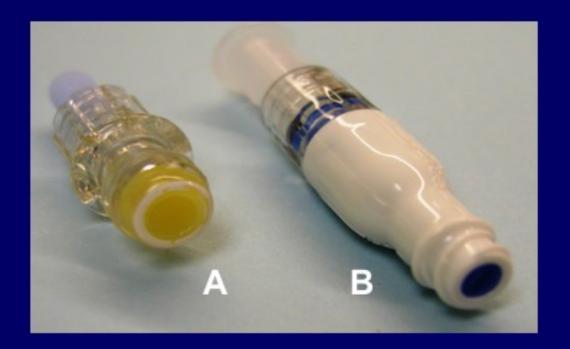

Figure: Courtesy Kristina Bryant, Kosair Children's Hosp

### Not All Mechanical Valves are Created Equal



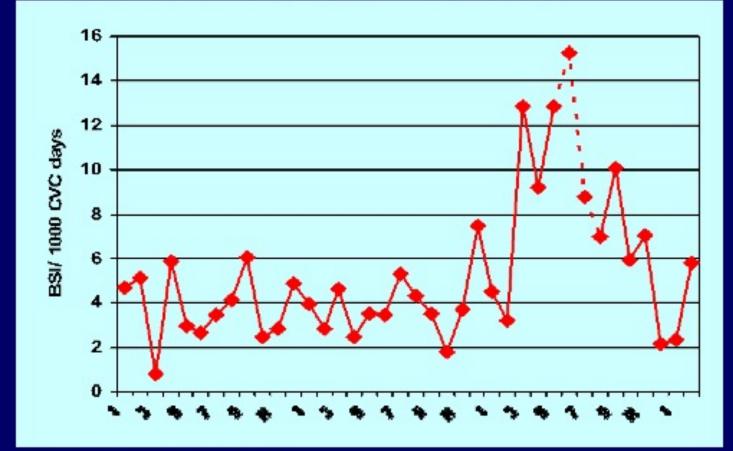
### Needleless Connector Valves Linked to Increased CLA-BSI




- Maragakis: ICHE, 2006
- Rupp: Clin Infect Dis, 2007
- Salgado: ICHE, 2007
- Field: ICHE, 2007
- Toscano: AJIC, 2009
- Jarvis: Clin Infect Dis, 2009

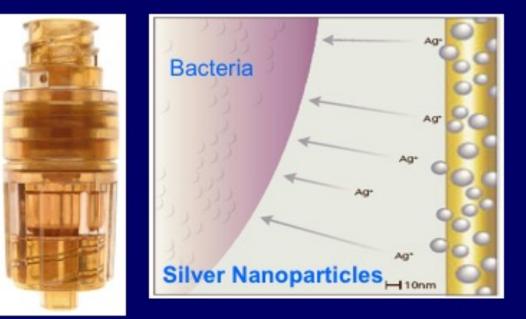
(Figure from Jarvis, Infect Control Today, 2010)

### Outbreak of Bloodstream Infection Temporally Associated with the Use of an Intravascular Needleless Valve


Mark E. Rupp, Lee A. Sholtz, Dawn R. Jourdan, Nedra D. Marion, Laura K. Tyner, Paul D. Fey, Peter C. Iwen and James R. Anderson

Clin Infect Dis 2007




A: Interlink IV Access System, Baxter B: SmartSite Plus, Alaris Medical Systems

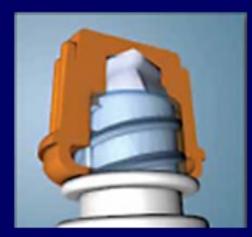
# **BSI Critical Care Units**



8 critical care areas, 132 beds. Baseline: 38,250 CVC days, rate 3.87/1000 CVC d Outbreak: 10,340 CVC d, rate 10.64/1000 CVC d (2.82 fold increase) (p < 0.0001) Post removal: rate 5.59/1000 CVC d (p= 0.02)

### Silver coated connector valves




 2 silver coated IV connector valves on the market. Very little clinical data re: effect on colonization of catheters or Bloodstream infection Comparison of a Novel Silver-Coated Needleless Connector and a Standard Needleless Connector for the Prevention Of CLA-BSI JT Jacob, et al. ICHE, 2015

Standard CAD at Hospital A Novel CAD at Hospital A Standard CAD at Hospital B Novel CAD at Hospital B Hospital / Hospital B 2 Dec 2 **BSI Rate** Crossove DEC09 JAN10 FEB10 MAR10 APR10 MAY10 FEB11 MAR11 APR11 MAY11

CLA-BSI rate: 1.79/1000 CVC d vs 1.21/1000 CVC d IR = 0.68 [95% CI 0.52-0.89] P = 0.005

The limit lines represent the confidence intervals (and associated p-values) of the modeled incidence ratio (IR) Hospital A started with the novel CAD and switched to the standard CAD after crossover Hospital B started with the standard CAD and switched to the novel CAD after crossover

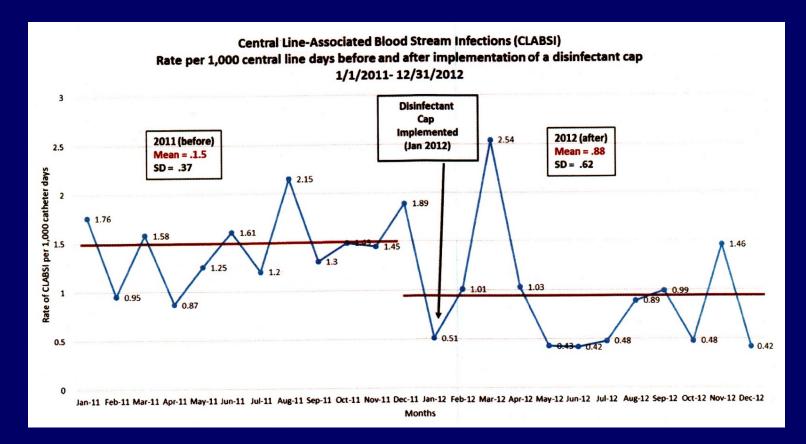
# Antiseptic Caps









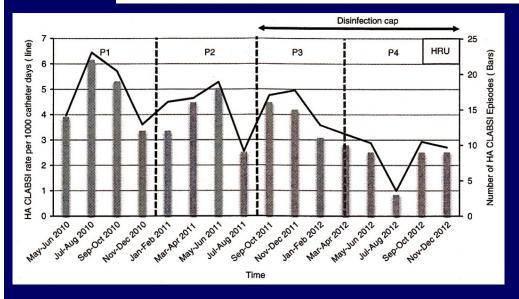




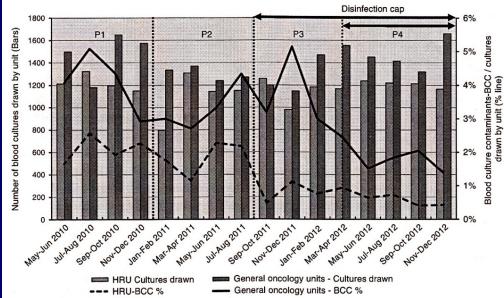

Impact of universal disinfectant cap implementation on central line—associated bloodstream infections

Katreena Collette Merrill RN, PhD<sup>a,\*</sup>, Sharon Sumner RN, BS<sup>b</sup>, Lorraine Linford RN, BS, CNSC<sup>c</sup>, Carrie Taylor RN, MS, CIC<sup>b</sup>, Christopher Macintosh RN, BS<sup>d</sup>

#### AJIC, 2014




CLA-BSI decreased from 1.5/1000 CVC d to 0.88/1000 CVC d, p = 0.004


#### Use of Disinfection Cap to Reduce Central-Line–Associated Bloodstream Infection and Blood Culture Contamination Among Hematology–Oncology Patients

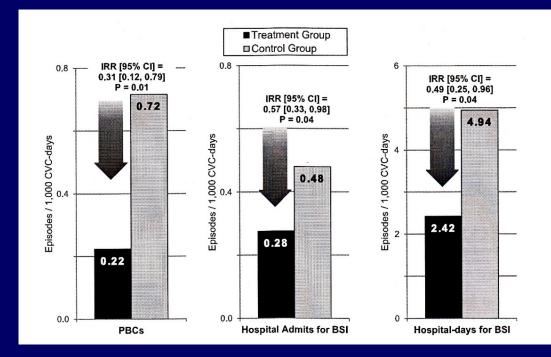
Mini Kamboj, MD;<sup>1,3,4</sup> Rachel Blair, MPH;<sup>1</sup> Natalie Bell, RN;<sup>1,2</sup> Crystal Son, MPH;<sup>1</sup> Yao-Ting Huang, MPH, PhD;<sup>3</sup> Mary Dowling, MSN, RN;<sup>2</sup> Allison Lipitz-Snyderman, PhD;<sup>5</sup> Janet Eagan, RN, MPH, CIC;<sup>1</sup> Kent Sepkowitz, MD<sup>1,3,4</sup>

ICHE, 2015



CLA-BSI in high-risk pts: Rate per 1000 CVC d: 4.93, 4.22, 4.47, 2.34 (P1-P4 respectively)

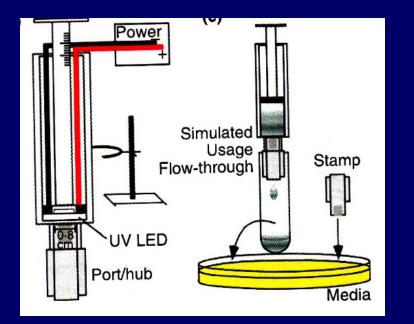


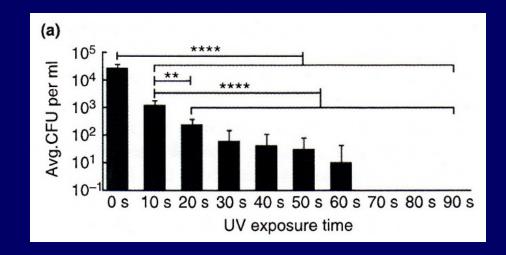

# Blood culture contamination rate by CoNS



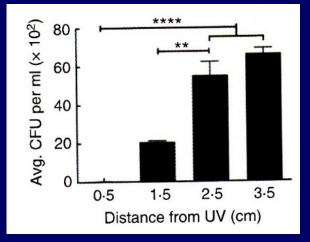
Dialysis Catheter–Related Bloodstream Infections: A Cluster-Randomized Trial of the ClearGuard HD Antimicrobial Barrier Cap

Jeffrey L. Hymes, MD,<sup>1</sup> Ann Mooney, MSN, RN, CNN,<sup>2</sup> Carly Van Zandt, MS,<sup>2</sup> Laurie Lynch, PhD,<sup>3</sup> Robert Ziebol, BS,<sup>3</sup> and Douglas Killion, MBA<sup>3</sup>


- 12 month, prospective, cluster-randomized study in 40 HD units.
- 2470 pts; 350,000 CVC days
- 56% lower (+) Bld Cx rate (p=0.01)
- 40% decrease in hospital admissions for BSI (p=0.04); 31% less hospital days (p=NS)




Results for last 6 months of the study


# UV light-emitting diode disinfection

Hutchens, et al. J Applied Micro, 2015





285 nm UV LED effectively disinfected needleless connectors with 60s exposure at 0.5 cm.



# **Chlorhexidine Patient Bathing**

Effectiveness of Chlorhexidine Bathing to Reduce Catheter-Associated Bloodstream Infections in Medical Intensive Care Unit Patients

Arch Intern Med 2007

Susan C. Bleasdale, MD; William E. Trick, MD; Ines M. Gonzalez, MD; Rosie D. Lyles, MD; Mary K. Hayden, MD; Robert A. Weinstein, MD

### Daily CHG baths in ICU patients decreased BSI from 16.8 to 6.4/1000 CVC d.

#### Effect of Daily Chlorhexidine Bathing on Hospital-Acquired Infection

NEJM 2013

Michael W. Climo, M.D., Deborah S. Yokoe, M.D., M.P.H., David K. Warren, M.D., Trish M. Perl, M.D., Maureen Bolon, M.D., Loreen A. Herwaldt, M.D.,
Robert A. Weinstein, M.D., Kent A. Sepkowitz, M.D., John A. Jernigan, M.D., Kakotan Sanogo, M.S., and Edward S. Wong, M.D.

### 28% decrease in bloodstream infections (P = 0.007)

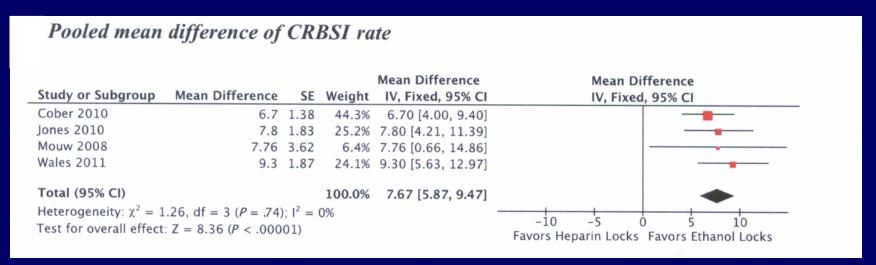
#### Targeted versus Universal Decolonization to Prevent ICU Infection

Susan S. Huang, M.D., M.P.H., Edward Septimus, M.D., Ken Kleinman, Sc.D., Julia Moody, M.S., Jason Hickok, M.B.A., R.N., Taliser R. Avery, M.S., Julie Lankiewicz, M.P.H., Adrijana Gombosev, B.S., Leah Terpstra, B.A., Fallon Hartford, M.S., Mary K. Hayden, M.D., John A. Jernigan, M.D., Robert A. Weinstein, M.D., Victoria J. Fraser, M.D., Katherine Haffenreffer, B.S., Eric Cui, B.S., Rebecca E. Kaganov, B.A., Karen Lolans, B.S., Jonathan B. Perlin, M.D., Ph.D., and Richard Platt, M.D., for the CDC Prevention Epicenters Program and the AHRQ DECIDE Network and Healthcare-Associated Infections Program\* NEJM 2013

### HR for BSI (intervention vs baseline): 0.99 vs 0.78 vs 0.56 (P = <0.001)</p>

### **Anti-Infective Catheter Lock Solutions**

| Author                               | Population              | RR (95% CI)       | Events,<br>Treatment | Events,<br>Control | %<br>Weight |   |
|--------------------------------------|-------------------------|-------------------|----------------------|--------------------|-------------|---|
| Handrup                              | Pediatric hematology    | 0.29 (12, 66)     | 7/17500              | 26/18571           | 7.46        | * |
| Broom                                | HD patients             | 0.17 (02, 1.63)   | 1/3614               | 3/1834             | 1.21        | * |
| Dumichen                             | Pediatric hematology    | 0.24 (05, 1.13)   | 2/6576               | 9/7233             | 2.55        |   |
| Moran                                | HD patients             | 0.30 (15, .60)    | 11/39627             | 30/32933           | 10.02       | p |
| Sofroniadou                          | HD patients             | - 0.11 (.01, .87) | 1/1652               | 9/1641             | 1.45        | ľ |
| Oguzhan                              | HD patients             | 1.84 (34, 10.04)  | 4/3368               | 2/3099             | 2.11        | Ċ |
| Maki                                 | HD patients             | • 0.29 (.12, .72) | 6/25274              | 20/24395           | 6.44        |   |
| Hemmelgarn                           | HD patients             | - 0.29 (.11, .80) | 5/12500              | 15/10949           | 5.40        | ( |
| Bisseling                            | TPN patients            | • 0.09 (01, .72)  | 1/5370               | 10/4939            | 1.46        |   |
| Zhang                                | HD patients             | 0.06 (01, .65)    | 1/17781              | 11/16299           | 1.47        | Т |
| Seliem                               | Critically II neonates  | 0.23 (.08, .63)   | 5/1111               | 13/652             | 5.27        | H |
| MacRao                               | HD patients             | 0.67 (.20, 2.18)  | 5/2273               | 6/1818             | 4.09        |   |
| Sanders                              | Hematology              | 0.19 (.05, .68)   | 3/501                | 11/353             | 3.61        | ( |
| Filippi                              | Critically II neonates  | - 0.10 (.01, .80) | 1/455                | 11/522             | 1.48        |   |
| Kim                                  | HD patients             | 0.14 (02, 1.15)   | 1/2273               | 7/2244             | 1.41        | > |
| Saxena                               | HD patients             | 0.53 (38, .73)    | 96/58035             | 56/17885           | 23.65       |   |
| Neijmer                              | HD patients             | 0.27 (13, 56)     | 9/8181               | 33/8048            | 9.09        |   |
| Sarland                              | Critically ill neonates | - 0.33 (14, .78)  | 7/854                | 18/723             | 7.00        | e |
| Bloyer                               | HD patients             | 0.30 (.01, 7.42)  | 0/2336               | 1/2118             | 0.62        |   |
| McIntyre                             | HD patients             | 0.08 (.01, .59)   | 1/3252               | 10/2470            | 1,46        | * |
| Betjes                               | HD patients             | 0.14 (01, 2.56)   | 0/1519               | 4/1885             | 0.74        |   |
| Dogra                                | HD patients             | 0.12 (.01, 2.23)  | 0/3290               | 3/2643             | 0.72        | Ċ |
| Pervez                               | HD patients             | 0.20 (.02, 1.82)  | 1/1613               | 4/1311             | 1.29        |   |
| Verall (I-squared = 12.3%, P = .293) |                         | 0.31 (.24, .40)   | 168/219145           | 312/164565         | 100.00      |   |

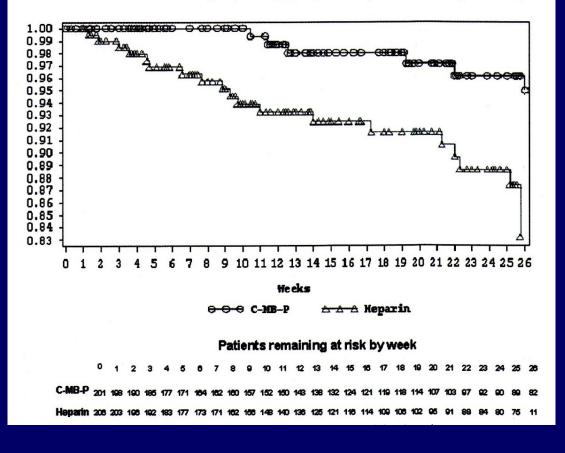

\* 23 studies, 2896 patients, 69% decrease in CLABSI RR: 0.31 95CI (.24-.40)
\* 32% decrease in exit site infections
\* Mortality 16% decrease (NS)

Conclusion: Anti-Infective Lock solutions are useful in certain circumstances. Additional study to assess optimal solution (antibiotics, alcohol, taurolidine, trisodium citrate, EDTA, nitroglycerin, etc) and populations

Zacharioudakis, et al. CID, 2015 37

### Ethanol Locks to Prevent Catheter-Related Bloodstream Infections in Parenteral Nutrition: A Meta-Analysis

### Oliveira C, et al. Pediatrics, 2012




- Risk ratio for CR-BSI: 0.19 (95% CI 0.12-0.32)
- Risk ratio for catheter replacement: 0.28 (95% CI 0.06-1.23)
- Rare Toxicty: Etoh assoc with clotting, dizziness, CVC mechanical compromise, protein ppt, etc.

#### A novel antimicrobial and antithrombotic lock solution for hemodialysis catheters: A multi-center, controlled, randomized trial\*

Dennis G. Maki, MD; Stephen R. Ash, MD; Roland K. Winger, BS, PE; Philip Lavin, PhD; for the AZEPTIC Trial Investigators

The difference between the two groups is highly significant (P=0.0016 by log-rank test).



Prospective, Randomized, Multi-Ctr trial 25 HD units, 407 pts, 50K CVC days 7% citrate, 0.15% methylene blue, 0.15% methylparaben, 0.015% propylparaben (C-MB-P) 0.82 vs 0.24 CRBSI/1000 CVC d; RR 0.29 (0.12-0.7, p = 0.005)

## Statewide Survey of Technologic CLA-BSI Prevention

 Nebraska statewide survey of hospitals (25 PPS/65 CAH)

Response: 17 PPS (68%), 25 CAH (40%)

| Technology                   | PPS (%)                | CAH (%) |  |
|------------------------------|------------------------|---------|--|
| CHG Dressing                 | 94                     | 73      |  |
| Antibiotic or Antiseptic CVC | 47                     | 31      |  |
| Passive port disinfection    | 35                     | 54      |  |
| CHG bathing in ICU           | 65                     | 8       |  |
| CVC lock soln                | 17                     | 12      |  |
|                              | Rupp et al. AJIC, 2016 |         |  |

40

# Scope of the Problem What about Peripheral IVs???

Yearly Use of Peripheral IVs



 Little systematic data regarding complications: infection, phlebitis, infiltration, extravasation The Risk of Bloodstream Infection in Adults With Different Intravascular Devices: A Systematic Review of 200 Published Prospective Studies

DENNIS G. MAKI, MD; DANIEL M. KLUGER, MD; AND CHRISTOPHER J. CRNICH, MD

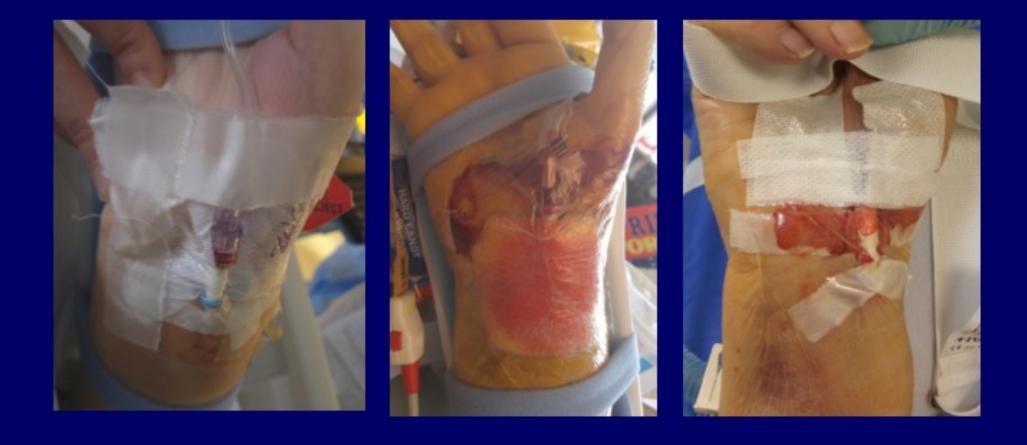
Mayo Clin Proc, 2006

- Review of 110 studies, 10,910 catheters
   0.1 BSI/100 devices; 0.5 (95% CI 0.2– 0.7)/1000 device days
- 9 studies that required microbial concordance between catheter and blood culture: 0.6 BSI/1000 device d
- I per 1000 devices x 330 Million/2.25 attempts per successful IV start = 146,000 episodes of BSI

## Status of Vascular Access at the University of Nebraska Medical Center

Series of point prevalence surveys in all units during summer 2015 All units visited on at least 3 occasions 755 patients ■ 59 (8%) No vascular access ■ 414 (55%) peripheral IV only ■ 239 (32%) CVC only ■ 43 (6%) both CVC and PIV

Rupp ME. Unpublished Observations


# Peripheral IVs

# Problems with securement



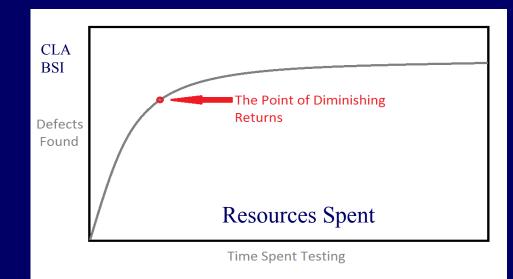


## **Arterial Catheters & Dressings**



# Prevention of IV Catheter-Related Bloodstream Infection

### Practice Measures


- Education and Training
- Appropriate staffing
- Insertion and Care Bundle
  - CHG skin prep
  - Sterile barrier precautions
  - Avoid femoral site
  - Scrub the hub
- Removal of CVCs

### Technologic Innovations

- Antimicrobial-Coated CVC
- CHG impregnated dressings
- CHG patient bathing
- Catheter Flush/Lock soln
- Antimicrobial-Coated Connectors
- Antiseptic Caps

Prevention of IV Catheter-Related Bloodstream Infection and "Getting to Zero"

Cost Effectiveness
 Point of Diminishing Returns



# Questions & Comments



|                | www.webbertraining.com/schedulep1.php                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| April 12, 2017 | (FREE WHO Teleclass - Europe)<br>PRACTICAL STEPS TO DEVELOP AND SUSTAIN AN EFFECTIVE NATIONAL<br>HAND HYGIENE PROGRAMME AND ITS IMPACT ON ANTIMICROBIAL<br>RESISTANCE<br>Speaker: Professor Lindsay Grayson, World Health Organization, Melbourne,<br>Australia<br>Sponsored by the World Health Organization Infection Control Global Unit<br>(www.who.int/gpsc/en) |
| April 25, 2017 | (FREE European Teleclass Denver Russell Memorial Teleclass Lecture)<br>DO'S AND DONT'S FOR HOSPITAL CLEANING<br>Speaker: Dr. Stephanie Dancer, Health Protection Scotland                                                                                                                                                                                            |
| April 27, 2017 | COST ANALYSIS OF UNIVERSAL SCREENING VS. RISK FACTOR-BASED<br>SCREENING FOR MRSA<br>Speaker: Dr. Virginia Roth, University of Ottawa                                                                                                                                                                                                                                 |
| May 5, 2017    | (FREE WHO Teleclass - Europe)<br>SPECIAL LECTURE FOR 5 MAY<br>Speaker: Prof. Didier Pittet, World Health Organization, Geneva<br>Sponsored by the World Health Organization Infection Control Global Unit<br>(www.who.int/apsc/en)                                                                                                                                   |

## Thanks to Teleclass Education PATRON SPONSORS

